Background: Neuregulins are a family of signalling proteins that orchestrate a broad range of cellular responses. Four genes encoding Neuregulins 1-4 have been identified so far in vertebrates. Among them, Neuregulin 1 and Neuregulin 3 have been reported to contribute to an increased risk for developing schizophrenia. We hypothesized that three specific variants of these genes (rs6994992 and rs3924999 for Neuregulin 1 and rs10748842 for Neuregulin 3) that have been related to this illness may modify information processing capacity in the cortex, which would be reflected in electrophysiological parameters (P3b amplitude or gamma noise power) and/or cognitive performance.
Methods: We obtained DNA from 31 patients with schizophrenia and 23 healthy controls and analyzed NRG1 rs6994992, NRG1 rs3924999 and NRG3 rs10748842 promoter polymorphisms by allelic discrimination with real-time polymerase chain reaction (PCR). We compared cognitive outcome, P300 amplitude parameters and an electroencephalographic measure of noise power in the gamma band between the groups dichotomized according to genotype.
Results: Contrary to our hypothesis, we could not detect any significant influence of variation in Neuregulin 1/Neuregulin 3 polymorphisms on cognitive performance or electrophysiological parameters of patients with schizophrenia.
Conclusions: Despite our findings, we cannot discard that other genetic variants and, more likely, interactions between those variants and with genetic variation related to different pathways may still influence cerebral processing in schizophrenia.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4065086 | PMC |
http://dx.doi.org/10.1186/1744-859X-13-18 | DOI Listing |
Front Robot AI
January 2025
Department of Materials and Production, Aalborg University, Aalborg, Denmark.
Object pose estimation is essential for computer vision applications such as quality inspection, robotic bin picking, and warehouse logistics. However, this task often requires expensive equipment such as 3D cameras or Lidar sensors, as well as significant computational resources. Many state-of-the-art methods for 6D pose estimation depend on deep neural networks, which are computationally demanding and require GPUs for real-time performance.
View Article and Find Full Text PDFNature
January 2025
Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.
The integrated frequency comb generator based on Kerr parametric oscillation has led to chip-scale, gigahertz-spaced combs with new applications spanning hyperscale telecommunications, low-noise microwave synthesis, light detection and ranging, and astrophysical spectrometer calibration. Recent progress in lithium niobate (LiNbO) photonic integrated circuits (PICs) has resulted in chip-scale, electro-optic (EO) frequency combs, offering precise comb-line positioning and simple operation without relying on the formation of dissipative Kerr solitons. However, current integrated EO combs face limited spectral coverage due to the large microwave power required to drive the non-resonant capacitive electrodes and the strong intrinsic birefringence of LiNbO.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Epidemiology and Biostatistics, School of Public Health, University at Albany, State University of New York, Rensselaer, New York, United States of America.
Since the emergence of the SARS-CoV-2 virus, research into the existence, extent, and pattern of seasonality has been of the highest importance for public health preparation. This study uses a novel bandpass bootstrap approach called the Variable Bandpass Periodic Block Bootstrap to investigate the periodically correlated components including seasonality within US COVID-19 mortality. Bootstrapping to produce confidence intervals for periodic characteristics such as the seasonal mean requires preservation of the periodically correlated component's correlation structure during resampling.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Electrical and Computer Engineering, The University of Tulsa, Tulsa, OK, United States of America.
As a non-contact method, the transient electromagnetic (TEM) method has the characteristics of high efficiency, small impact of device, no limitation of site range, and high resolution, and is a hot topic in current research. However, the research on the refined data processing method of TEM is lag, which seriously restricts the application in superficial engineering investigation and is a key problem that needs to be solved urgently. The particle swarm optimization (PSO) algorithm and firefly algorithm (FA) were successful swarm intelligence algorithms inspired by nature.
View Article and Find Full Text PDFMed Phys
January 2025
Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands.
Background: Dedicated breast computed tomography (bCT) systems offer detailed imaging for breast cancer diagnosis and treatment. As new bCT generations are developed, it is important to evaluate their imaging performance and dose efficiency to understand differences over previous models.
Purpose: To characterize the imaging performance and dose efficiency of a second-generation (GEN2) bCT system and compare them to those of a first-generation (GEN1) system.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!