Human TRPM8 and TRPA1 pain channels, including a gene variant with increased sensitivity to agonists (TRPA1 R797T), exhibit differential regulation by SRC-tyrosine kinase inhibitor.

Biosci Rep

*Respiratory Medicine, Centre for Cardiovascular and Metabolic Research, Daisy Building, University of Hull and Hull York Medical School, Castle Hill Hospital, Cottingham HU16 5JQ, East Yorkshire, U.K.

Published: August 2014

TRPM8 (transient receptor potential M8) and TRPA1 (transient receptor potential A1) are cold-temperature-sensitive nociceptors expressed in sensory neurons but their behaviour in neuronal cells is poorly understood. Therefore DNA expression constructs containing human TRPM8 or TRPA1 cDNAs were transfected into HEK (human embryonic kidney cells)-293 or SH-SY5Y neuroblastoma cells and G418 resistant clones analysed for effects of agonists and antagonists on intracellular Ca2+ levels. Approximately 51% of HEK-293 and 12% of SH-SY5Y cell clones expressed the transfected TRP channel. TRPM8 and TRPA1 assays were inhibited by probenecid, indicating the need to avoid this agent in TRP channel studies. A double-residue mutation in ICL-1 (intracellular loop-1) of TRPM8 (SV762,763EL, mimicking serine phosphorylation) or one in the C-terminal tail region (FK1045,1046AG, a lysine knockout) retained sensitivity to agonists (WS 12, menthol) and antagonist {AMTB [N-(3-Aminopropyl)-2-[(3-methylphenyl)methoxy]-N-(2-thienylmethyl)benzamide]}. SNP (single nucleotide polymorphism) variants in TRPA1 ICL-1 (R797T, S804N) and TRPA1 fusion protein containing C-terminal (His)10 retained sensitivity to agonists (cinnamaldehyde, allyl-isothiocyanate, carvacrol, eugenol) and antagonists (HC-030031, A967079). One SNP variant, 797T, possessed increased sensitivity to agonists. TRPA1 became repressed in SH-SY5Y clones but was rapidly rescued by Src-family inhibitor PP2 [4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine]. Conversely, TRPM8 in SH-SY5Y cells was inhibited by PP2. Further studies utilizing SH-SY5Y may identify structural features of TRPA1 and TRPM8 involved in conferring differential post-translational regulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4122973PMC
http://dx.doi.org/10.1042/BSR20140061DOI Listing

Publication Analysis

Top Keywords

sensitivity agonists
16
trpm8 trpa1
12
trpa1
9
human trpm8
8
increased sensitivity
8
agonists trpa1
8
transient receptor
8
receptor potential
8
trp channel
8
retained sensitivity
8

Similar Publications

Metabolic and insulin-resistant diseases, such as type 2 diabetes mellitus (T2DM), have become major health issues worldwide. The prevalence of insulin resistance in the general population ranges from 15.5% to 44.

View Article and Find Full Text PDF

Preparation of Washed Human Platelets for Quantitative Metabolic Flux Studies.

J Vis Exp

January 2025

Depeartment of Chemical and Biological Engineering, Colorado School of Mines; Quantitative Biosciences and Engineering, Colorado School of Mines;

Platelets are blood cells that play an integral role in hemostasis and the innate immune response. Platelet hyper- and hypoactivity have been implicated in metabolic disorders, increasing risk for both thrombosis and bleeding. Platelet activation and metabolism are tightly linked, with the numerous methods to measure the former but relatively few for the latter.

View Article and Find Full Text PDF

N-glycosylation of ephrin B1 modulates its function and confers therapeutic potential in B-cell lymphoma.

J Biol Chem

January 2025

State Key Laboratory of Pharmaceutical Biotechnology, Department of Biochemistry, School of Life Sciences, Nanjing University, Nanjing, 210023, China. Electronic address:

Given the pivotal role of the Eph-Ephrin signaling pathway in tumor progression, agonists or antagonists targeting Eph/Ephrin have emerged as promising anticancer strategies. However, the implications of glycosylation modifications within Eph/Ephrin and their targeted protein therapeutics remain elusive. Here, we identify that N-glycosylation within the receptor-binding domain (RBD) of ephrin B1 (EFNB1) is indispensable for its functional repertoire.

View Article and Find Full Text PDF

HNF4α inhibits the malignancy of intrahepatic cholangiocarcinoma by suppressing the Wnt signaling pathway.

Transl Oncol

January 2025

Department of Gastroenterology, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai 200003, China. Electronic address:

Previous studies have demonstrated that intrahepatic cholangiocarcinoma (ICC) may derive from transdifferentiation of hepatocytes, so transforming ICC cells into hepatocytes could be a potential strategy for treating ICC. Hepatocyte nuclear factor 4α (HNF4α), a master transcription factor in the liver, has been demonstrated to induce the differentiation of hepatocellular carcinoma, while its effects on ICC remains unclear. Ivosidenib, an isocitrate dehydrogenase 1 (IDH1) inhibitor, is a novel targeted drug for ICC patients.

View Article and Find Full Text PDF

Rationale & Objective: Glucagon-like peptide-1 receptor agonists (GLP-1RAs) improve cardiac and kidney outcomes in patients with diabetes; however their efficacy in individuals with reduced estimated glomerular filtration rate (eGFR) is uncertain. This study evaluated the effects of GLP-1RAs on kidney and cardiovascular (CV) outcomes in patients with chronic kidney disease (CKD).

Study Design: Systematic review and meta-analysis of randomized controlled trials (RCTs) reported through May 25, 2024.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!