A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A multiscale approach to predicting affinity changes in protein-protein interfaces. | LitMetric

A multiscale approach to predicting affinity changes in protein-protein interfaces.

Proteins

Department of Cell and Molecular Biology, Computational and Systems Biology, Uppsala University, 751 24, Uppsala, Sweden.

Published: October 2014

Substitution mutations in protein-protein interfaces can have a substantial effect on binding, which has consequences in basic and applied biomedical research. Experimental expression, purification, and affinity determination of protein complexes is an expensive and time-consuming means of evaluating the effect of mutations, making a fast and accurate in silico method highly desirable. When the structure of the wild-type complex is known, it is possible to economically evaluate the effect of point mutations with knowledge based potentials, which do not model backbone flexibility, but these have been validated only for single mutants. Substitution mutations tend to induce local conformational rearrangements only. Accordingly, ZEMu (Zone Equilibration of Mutants) flexibilizes only a small region around the site of mutation, then computes its dynamics under a physics-based force field. We validate with 1254 experimental mutants (with 1-15 simultaneous substitutions) in a wide variety of different protein environments (65 protein complexes), and obtain a significant improvement in the accuracy of predicted ΔΔG.

Download full-text PDF

Source
http://dx.doi.org/10.1002/prot.24634DOI Listing

Publication Analysis

Top Keywords

protein-protein interfaces
8
substitution mutations
8
protein complexes
8
multiscale approach
4
approach predicting
4
predicting affinity
4
affinity changes
4
changes protein-protein
4
interfaces substitution
4
mutations
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!