Background: Chronic inflammation-mediated β-cell apoptosis is known to decrease β-cell mass in diabetes leading to reduced insulin secretion. Exposure to pro-inflammatory cytokines can stimulate apoptosis in pancreatic β-cells. The G protein coupled receptor 40 (GPR40) is implicated for glucose induced insulin secretion. We hypothesized that GPR40 activation can protect β-cells from inflammation-induced apoptosis and restore glucose stimulated insulin secretion.
Results: By exposing NIT1 insulinoma cells and rat islets to a cocktail of pro-inflammatory cytokines (TNFα and IL1β), we mimicked inflammatory signaling as seen by JNK and NFκB activation and increased mRNA levels of TNFα, IL1β and NOS2a. These changes were reversed by pharmacological activation of GPR40 by a specific, small molecule, CNX-011-67. Further, GPR40 activation reduced inflammation-mediated oxidative and endoplasmic reticulum (ER) stresses. Importantly, GPR40 activation decreased inflammation-induced apoptosis as measured by key markers. These impacts of GPR40 were mediated through activation of PLC, CaMKII, calcineurin and cAMP. Cell survival was also enhanced by GPR40 activation as seen from the increased phosphorylation of Akt/PKB and enhanced expression of BCL2 and PDX1 genes. Interestingly, GPR40 activation restored both, inflammation-mediated inhibition on insulin secretion and intracellular insulin content.
Conclusions: In this study, we provide evidences that CNX-011-67, a GPR40 agonist, reduces inflammatory signaling and apoptosis in pancreatic β-cells while promoting insulin secretion and synthesis. Activation of GPR40 leads to attenuation of β-cell dysfunction caused by chronic inflammation and thus could be of immense clinical value to improve insulin secretion and β-cell survival.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4083038 | PMC |
http://dx.doi.org/10.1186/1471-2121-15-24 | DOI Listing |
J Diabetes Metab Disord
June 2025
Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.
Lycopene is a tetraterpene compound belonging to carotenoids that are widely present in tomatoes and similar products. It is known as a powerful anti-oxidant and a non-provitamin A carotenoid. Lycopene has been found to effectively improve diabetes mellitus and its complications, such as cardiac complications, disorders caused by oxidative stress, and liver and neurological disorders.
View Article and Find Full Text PDFThe use of incretin analogues has emerged in recent years as an effective approach to achieve both enhanced insulin secretion and weight loss in type 2 diabetes (T2D) patients. Agonists which bind and stimulate multiple receptors have shown particular promise. However, off target effects, including nausea and diarrhoea, remain a complication of using these agents, and modified versions with optimized pharmacological profiles and/or biased signaling at the cognate receptors are increasingly sought.
View Article and Find Full Text PDFFront Immunol
January 2025
Xin'an Medicine Research Center, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China.
Background: is a differentially expressed gene (DEG) between M1 and M2 macrophages. This study explained why it causes opposite effects in different circumstances.
Methods: Gene expression profiles of various cell subsets were compared by mining a public database.
Backgrounds And Aims: Type 2 diabetes and its complications are assumed to be major public health problems globally. Zinc is one of the elements that play a part in insulin secretion and signaling. Therefore, this study seeks the answer to the following question: "What are the effects of 220 mg zinc sulfate supplementation on the weight, blood pressure, and glycemic control of patients with Type 2 diabetes?".
View Article and Find Full Text PDFFront Nutr
January 2025
Aging and Metabolism Research Program, Oklahoma City, OK, United States.
Sulforaphane (SFN) is an isothiocyanate derived from cruciferous vegetables that has demonstrated anti-cancer, anti-microbial and anti-oxidant properties. SFN ameliorates various disease models in rodents (e.g.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!