Yersinia enterocolitica (YE) is a main pathogenic bacterium causing diarrhea and yersiniosis occurs in both developed and developing countries with high incidence. YE in contaminated food is able to survive for a long duration even under cold storage, thereby enhancing the risk of food infection. In this study, a new loop-mediated isothermal amplification (LAMP) method showing the characteristics of simplicity, rapidity, high specificity and sensitivity was established by targeting outL of pathogenic YE. Two inner-primers and outer-primers were designed and LAMP reaction was optimized for Mg2+, betaine, dNTPs and inner primers concentrations, reaction temperature and time. Sensitivity and specificity of the LAMP assay was evaluated using YE genomic DNA and those of 44 different bacteria strains, respectively. Validation of LAMP detection method was by employing meat samples spiked with varying CFU of YE. The optimized LAMP assay was specific, capable of detecting 97 fg of genomic DNA (equivalent to 37 genome copies) of YE (100-fold more sensitive than PCR) and 80 CFU/ml of YE-spiked meat samples based on ethidium bromide stained amplicon bands on agarose gel-electrophoresis and on GelRed fluorescence of the LAMP reaction solution, respectively. This rapid, sensitive and specific LAMP technique should enable application in field inspection of Y. enterocolitica in food.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!