A hit-to-lead optimisation programme was carried out on the Novartis archive screening hit, pyrimidine 2-((2,6-dichlorobenzyl)thio)-5-isocyano-6-phenylpyrimidin-4-ol 4, resulting in the discovery of CXCR2 receptor antagonist 2-((2,3-difluorobenzyl)thio)-6-(2-(hydroxymethyl)cyclopropyl)-5-isocyanopyrimidin-4-ol 24. The SAR was investigated by systematic variation of the aromatic group at c-6, the linker between c-2 and the halogenated ring, and the c-5 nitrile moiety.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2014.06.011DOI Listing

Publication Analysis

Top Keywords

cxcr2 receptor
8
discovery potent
4
potent orally
4
orally bioavailable
4
bioavailable pyrimidine-5-carbonitrile-6-alkyl
4
pyrimidine-5-carbonitrile-6-alkyl cxcr2
4
receptor antagonists
4
antagonists hit-to-lead
4
hit-to-lead optimisation
4
optimisation programme
4

Similar Publications

Next-generation cancer phenomics by deployment of multiple molecular endophenotypes coupled with high-throughput analyses of gene expression offer veritable opportunities for triangulation of discovery findings in non-small cell lung cancer (NSCLC) research. This study reports differentially expressed genes in NSCLC using publicly available datasets (GSE18842 and GSE229253), uncovering 130 common genes that may potentially represent crucial molecular signatures of NSCLC. Additionally, network analyses by GeneMANIA and STRING revealed significant coexpression and interaction patterns among these genes, with four notable hub genes-, , and -identified as pivotal in NSCLC progression.

View Article and Find Full Text PDF

Microglial NLRP3-gasdermin D activation impairs blood-brain barrier integrity through interleukin-1β-independent neutrophil chemotaxis upon peripheral inflammation in mice.

Nat Commun

January 2025

Department of Microbiology and Immunology, Brain Korea 21 Project for Medical Science, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea.

Blood-brain barrier (BBB) disintegration is a key contributor to neuroinflammation; however, the biological processes governing BBB permeability under physiological conditions remain unclear. Here, we investigate the role of NLRP3 inflammasome in BBB disruption following peripheral inflammatory challenges. Repeated intraperitoneal lipopolysaccharide administration causes NLRP3-dependent BBB permeabilization and myeloid cell infiltration into the brain.

View Article and Find Full Text PDF

: Airborne exogenous antigen inhalation can induce neutrophil infiltration of the airways, while eosinophils migrate to the airways in allergic airway inflammation. During a bacterial infection, Th2-associated cytokine IL-4, by binding to the IL-4 receptor (IL-4R), can suppress neutrophil recruitment to the site of inflammation. In the present study, we estimated whether the IL-4-dependent suppression of neutrophil recruitment contributed to the development of an immune response in asthma.

View Article and Find Full Text PDF

Exploring Immune Cell Infiltration and Small Molecule Compounds for Ulcerative Colitis Treatment.

Genes (Basel)

November 2024

Department of Pharmacology and Toxicology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6200 MD Maastricht, The Netherlands.

Background/objectives: Ulcerative colitis (UC) is a chronic inflammatory bowel disease (IBD) with a relapsing nature and complex etiology. Bioinformatics analysis has been widely applied to investigate various diseases. This study aimed to identify crucial differentially expressed genes (DEGs) and explore potential therapeutic agents for UC.

View Article and Find Full Text PDF

CXCR1 Expression in MDA-PCa-2b Cell Upregulates ITM2A to Inhibit Tumor Growth.

Cancers (Basel)

December 2024

Cancer Research Program, Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA.

Background: Chemokines, along with their receptors, exert critical roles in tumor development and progression. In prostate cancer (PCa), interleukin-8 (IL-8/CXCL8) was shown to enhance angiogenesis, proliferation, and metastasis. CXCL8 activates two receptors, CXCR1 and CXCR2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!