Carbonaceous material from pyrolysis (pyrochars) and hydrothermal carbonization (hydrochars) are applied to soil to improve soil fertility and carbon sequestration. As a positive side effect, the mobility of pesticides and the risk of groundwater contamination can be minimized. However, the impact of various raw materials on the sorption capacity of different pyrochars and hydrochars is poorly understood. Thus, sorption experiments were performed with (14)C-labeled isoproturon (IPU, 0.75 kg ha(-1)) in a loamy sand soil amended with either pyrochar or hydrochar (0.5% and 5% dry weight, respectively). Carbonaceous materials were produced from three different raw materials: corn digestate, miscanthus, woodchips of willow and poplar. After 72 h of incubation, a sequential extraction procedure was conducted to quantify in situ IPU bioavailability, total amount of extractable IPU, and non-extractable pesticide residues (NER). Added char amount, carbonization type, and raw materials had statistically significant effects on the sorption of IPU. The amount of in situ available IPU was reduced by a factor of 10-2283 in treatments with pyrochar and by a factor of 3-13 in hydrochar treatments. The surface area of the charred material was the most predictive variable of IPU sorption to char amended soil. Some physical and chemical char properties tend to correlate with pore water-, methanol- or non-extractable IPU amounts. Due to a low micro-porosity and ash content, high water extractable carbon contents and O-functional groups of hydrochars, the proportion of NER in hydrochar amended soils was considerably lower than in soil amended with pyrochars.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2014.05.059DOI Listing

Publication Analysis

Top Keywords

raw materials
12
pyrochars hydrochars
8
soil amended
8
situ ipu
8
ipu
7
soil
6
sorption
5
pyrochars
4
hydrochars differently
4
differently alter
4

Similar Publications

Upcycling industrial peach waste to produce dissolving pulp.

Environ Sci Pollut Res Int

January 2025

Laboratory of Design and Development of Innovative Knitted Textiles and Garments, Department of Industrial Design and Production Engineering, University of West Attica, 12244, Egaleo, Attica, Greece.

This study investigates the production of high-purity cellulose pulp from peach (Prunus persica) fruit wastes generated during the processing of a Greek compote and juice production industry. A three-step chemical process is used, including alkaline treatment with NaOH, organic acid (acetic and formic) treatment, and hydrogen peroxide treatment, with the goal of cellulose extraction and purification. A fractional factorial design optimized reagent levels, revealing the strong influence of NaOH concentration on α-cellulose content and degree of polymerization.

View Article and Find Full Text PDF

Metabolic engineering for single-cell protein production from renewable feedstocks and its applications.

Adv Biotechnol (Singap)

September 2024

School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, China.

Proteins are indispensable for maintaining a healthy diet and performing crucial functions in a multitude of physiological processes. The growth of the global population and the emergence of environmental concerns have significantly increased the demand for protein-rich foods such as meat and dairy products, exerting considerable pressure on global food supplies. Single-cell proteins (SCP) have emerged as a promising alternative source, characterized by their high protein content and essential amino acids, lipids, carbohydrates, nucleic acids, inorganic salts, vitamins, and trace elements.

View Article and Find Full Text PDF

In oil-rich regions, the increasing risk of oil spills on soil is largely attributed to intensified extraction and transportation activities. This situation necessitates a focus on the short-term and long-term strength of contaminated soils. While existing literature primarily evaluates the oil-contaminated soils over short-term periods, typically up to 28 days, it is essential to investigate their long-term performance, extending the evaluation period to 365 days.

View Article and Find Full Text PDF

Introduction: Owing to its high prevalence, colossal potential of chemoresistance, metastasis, and relapse, breast cancer (BC) is the second leading cause of cancer-related fatalities in women. Several treatments (eg, chemotherapy, surgery, radiations, hormonal therapy, etc.) are conventionally prescribed for the treatment of BC; however, these are associated with serious systemic aftermaths.

View Article and Find Full Text PDF

Targeted Conversion of Biomass into Primary Diamines via Carbon Shell-Confined Cobalt Nanoparticles.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P.R. China.

Primary diamines are valuable yet challenging to synthesize due to issues such as product and intermediate condensation and catalyst poisoning. To address these problems, effective synthesis systems must be explored. Here, 2,5-bis(aminomethyl)furan (BAMF), a biomass-derived primary diamine, is chosen as the model for constructing such a system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!