Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
4-Substituted 1,4-dihydropyridine-3,5-dicarboxylates (4) have been synthesized by the solvent-free reaction of aldehyde, methyl propiolate and ammonium carbonate catalyzed by ionic liquid 1-carboxymethyl-3-methylimidazolium tetrafluoroborate under ultrasonic irradiation. The effects of changes in the ultrasonic power, temperature, catalysts and reactants on the synthesis of 4-substituted 1,4-dihydropyridine-3,5-dicarboxylates (4) are discussed. With the optimized reaction conditions, various aldehydes were used to synthesize 1,4-dihydropyridines (4) under the influence of ultrasound irradiation. Compared with the conventional thermal methods, the remarkable advantages of this method are the simple experimental procedure, shorter reaction time (2-10min) and high yield of product (76-95%). Furthermore, the green catalytic system can be recycled specific times without significantly decreasing the yields and reaction rates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ultsonch.2014.05.026 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!