Role of methyl salicylate on oviposition deterrence in Arabidopsis thaliana.

J Chem Ecol

Department of Plant Molecular Biology, Unversity of Lausanne, Biophore Building, CH-1015, Lausanne, Switzerland.

Published: July 2014

Plants attacked by herbivores have evolved different strategies that fend off their enemies. Insect eggs deposited on leaves have been shown to inhibit further oviposition through visual or chemical cues. In some plant species, the volatile methyl salicylate (MeSA) repels gravid insects but whether it plays the same role in the model species Arabidopsis thaliana is currently unknown. Here we showed that Pieris brassicae butterflies laid fewer eggs on Arabidopsis plants that were next to a MeSA dispenser or on plants with constitutively high MeSA emission than on control plants. Surprisingly, the MeSA biosynthesis mutant bsmt1-1 treated with egg extract was still repellent to butterflies when compared to untreated bsmt1-1. Moreover, the expression of BSMT1 was not enhanced by egg extract treatment but was induced by herbivory. Altogether, these results provide evidence that the deterring activity of eggs on gravid butterflies is independent of MeSA emission in Arabidopsis, and that MeSA might rather serve as a deterrent in plants challenged by feeding larvae.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10886-014-0470-9DOI Listing

Publication Analysis

Top Keywords

methyl salicylate
8
arabidopsis thaliana
8
mesa emission
8
egg extract
8
mesa
6
plants
5
role methyl
4
salicylate oviposition
4
oviposition deterrence
4
arabidopsis
4

Similar Publications

Plant Volatile Methyl Salicylate Primes Wheat Defense Against the Grain Aphid by Altering the Synthesis of Defense Metabolites.

Plant Cell Environ

December 2024

College of Life Science/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding, China.

Wheat (Triticum aestivum L.) is one of the most important staple crops all over the world. Its productivity is adversely affected by aphid infestation.

View Article and Find Full Text PDF

Powdery mildew (PM), caused by the biotrophic fungus Podospharea leucotricha, is a major threat to apple production. Plant-plant communication (PPC) is a crucial strategy for plant communities to enhance their defence against pathogens. The interconversion of methyl salicylate (MeSA) and salicylic acid (SA) is critical for PPC regulation, but the mechanism of MeSA-mediated PPC is not fully understood.

View Article and Find Full Text PDF

In situ monitoring of small molecule diffusion at solid-solid interfaces is challenging, even with sophisticated equipment. Here, novel chromogenic photonic crystal detectors enabled by integrating bioinspired structural color with stimuli-responsive shape memory polymer (SMP) for detecting trace amounts of small molecule interfacial diffusion are reported. Colorless macroporous SMP membranes with deformed macropores can recover back to the "memorized" photonic crystal microstructures and the corresponding iridescent structural colors when triggered by diffused small molecules.

View Article and Find Full Text PDF

Background: Acanthacoccus lagerstroemiae (crape myrtle bark scale, CMBS) is an exotic scale insect that feeds on the sap of crape myrtle trees. Heavy infestations of CMBS reduce flowering and honeydew promotes sooty mold growth on the leaves and branches, reducing the aesthetic value of crape myrtle trees in urban landscapes. Lady beetles (Coleoptera: Coccinellidae) are generalist predators that feed on CMBS.

View Article and Find Full Text PDF

Background: As albino tea under the geographical protection of agricultural products, Zheng'an Bai tea is not only rich in amino acids, polyphenols and other beneficial components for the human body, but also its leaf color will turn green as the temperature gradually rises, thus causing changes in the quality characteristics of tea leaves. However, these changing characteristics have not yet been revealed.

Methods: In-depth quality analysis was carried out on the fresh leaves of Zheng'an Bai tea at four different developmental stages and four samples from the processing stage through extensive targeted metabolomics and SPME-GC-MS analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!