Cholinergic networks have been shown to be involved in generation and modulation of the locomotor rhythmic pattern produced by the mammalian central pattern generators. Here, we show that changes in the endogenous levels of acetylcholine in the sacral segments of the isolated spinal cord of the neonatal rat modulate the locomotor-related output produced by stimulation of sacrocaudal afferents in muscarinic receptor-dependent mechanisms. Cholinergic components we found on sacral relay neurons with lumbar projections through the ventral and lateral funiculi are suggested to mediate this ascending cholinergic modulation. Our findings, possible mechanisms accounting for them, and their potential implications are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12031-014-0351-2DOI Listing

Publication Analysis

Top Keywords

spinal cord
8
sacral relay
8
relay neurons
8
motor output
4
output hindlimb
4
hindlimb innervating
4
innervating segments
4
segments spinal
4
cord modulated
4
cholinergic
4

Similar Publications

Article Synopsis
  • Recent research indicates that blocking the RIPK1/RIPK3/MLKL necrosome can help reduce inflammatory pain linked to conditions like demyelination in the central nervous system.
  • This study tests necrostatin-1s (Nec-1s), a specific RIPK1 inhibitor, on LPS-induced inflammatory pain in male mice, assessing pain sensitivity through hot plate tests and examining related protein changes.
  • Results show that Nec-1s not only prevents LPS-induced pain relief but also reverses the activation of key proteins and signals involved in inflammation and demyelination, suggesting that RIPK1 inhibitors could be a promising treatment for managing inflammatory pain.
View Article and Find Full Text PDF

Artificial enforcement of the unfolded protein response (UPR) reduces disease features in multiple preclinical models of ALS/FTD.

Mol Ther

January 2025

Program of Cellular and Molecular Biology, Biomedical Sciences Institute (ICBM), Universidad de Chile, Santiago, Chile; Biomedical Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Buck Institute for Research on Aging, Novato, CA, USA. Electronic address:

Amyotrophic lateral sclerosis (ALS) and fronto-temporal dementia (FTD) are part of a spectrum of diseases that share several causative genes, resulting in a combinatory of motor and cognitive symptoms and abnormal protein aggregation. Multiple unbiased studies have revealed that proteostasis impairment at the level of the endoplasmic reticulum (ER) is a transversal pathogenic feature of ALS/FTD. The transcription factor XBP1s is a master regulator of the unfolded protein response (UPR), the main adaptive pathway to cope with ER stress.

View Article and Find Full Text PDF

Background: Ferroptosis and immune responses are critical pathological events in spinal cord injury (SCI), whereas relative molecular and cellular mechanisms remain unclear.

Methods: Micro-array datasets (GSE45006, GSE69334), RNA sequencing (RNA-seq) dataset (GSE151371), spatial transcriptome datasets (GSE214349, GSE184369), and single cell RNA sequencing (scRNA-seq) datasets (GSE162610, GSE226286) were available from the Gene Expression Omnibus (GEO) database. Through weighted gene co-expression network analysis and differential expression analysis in GSE45006, we identified differentially expressed time- and immune-related genes (DETIRGs) associated with chronic SCI and differentially expressed ferroptosis- and immune-related genes (DEFIRGs), which were validated in GSE151371.

View Article and Find Full Text PDF

Spinal cord injury (SCI) is a neurodegenerative disease, with a high disability rate. According to the results of mRNA-seq, transcription factor AP-2 Beta (TFAP2B) is a potential target of repetitive Transspinal Magnetic Stimulation (rTSMS) in SCI treatment. Our results demonstrated that rTSMS significantly improved motor function and promoted neuronal survival post-SCI.

View Article and Find Full Text PDF

Baicalin ameliorates neuroinflammation by targeting TLR4/MD2 complex on microglia via PI3K/AKT/NF-κB signaling pathway.

Neuropharmacology

January 2025

National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China. Electronic address:

This study aims to elucidate the target and mechanism of baicalin, a clinically utilized drug, in the treatment of neuroinflammatory diseases. Neuroinflammation, characterized by the activation of glial cells and the release of various pro-inflammatory cytokines, plays a critical role in the pathogenesis of various diseases, including spinal cord injury (SCI). The remission of such diseases is significantly dependent on the improvement of inflammatory microenvironment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!