Phosphodiesterase (PDE) inhibitor torbafylline (HWA 448) attenuates burn-induced rat skeletal muscle proteolysis through the PDE4/cAMP/EPAC/PI3K/Akt pathway.

Mol Cell Endocrinol

Department of Surgery, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267, USA; Shriners Hospital for Children, 3229 Burnet Avenue, Cincinnati, OH 45229, USA; Cincinnati Veterans Affairs Medical Center, 3200 Vine Street, Cincinnati, OH 45220, USA. Electronic address:

Published: August 2014

Treatment of rats after burn-injury with the cyclic AMP phosphodiesterase (PDE) inhibitor, torbafylline (also known as HWA 448) significantly reversed changes in rat skeletal muscle proteolysis, PDE4 activity, cAMP concentrations and mRNA expression of TNFα, IL-6, ubiquitin and E3 ligases. Torbafylline also attenuated muscle proteolysis during in vitro incubation, and this effect was blocked by the inhibitor Rp-cAMPS. Moreover, torbafylline significantly increased phospho-Akt levels, and normalized downregulated phospho-FOXO1 and phospho-4E-BP1 in muscle of burn rats. Similarly, torbafylline also normalized phosphorylation levels of Akt and its downstream elements in TNFα+IFNγ treated C2C12 myotubes. Torbafylline enhanced protein levels of exchange protein directly activated by cAMP (Epac) both in skeletal muscle of burn rats and in TNFα+IFNγ treated C2C12 myotubes. Pretreatment with a specific antagonist of PI3K or Epac significantly reversed the inhibitory effects of torbafylline on TNFα+IFNγ-induced MAFbx mRNA expression and protein breakdown in C2C12 myotubes. Torbafylline inhibits burn-induced muscle proteolysis by activating multiple pathways through PDE4/cAMP/Epac/PI3K/Akt.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mce.2014.06.012DOI Listing

Publication Analysis

Top Keywords

muscle proteolysis
16
skeletal muscle
12
c2c12 myotubes
12
phosphodiesterase pde
8
pde inhibitor
8
torbafylline
8
inhibitor torbafylline
8
torbafylline hwa
8
hwa 448
8
rat skeletal
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!