Redox imbalance is a primary cause of endothelial dysfunction (ED). Under oxidant stress, many critical proteins regulating endothelial function undergo oxidative modifications that lead to ED. Cellular levels of glutathione (GSH), the primary reducing source in cells, can significantly regulate cell function via reversible protein thiol modification. N-acetylcysteine (NAC), a precursor for GSH biosynthesis, is beneficial for many vascular diseases; however, the detailed mechanism of these benefits is still not clear. From HPLC analysis, NAC significantly increases both cellular GSH and tetrahydrobiopterin levels. Immunoblotting of endothelial NO synthase (eNOS) and DUSP4, a dual-specificity phosphatase with a cysteine as its active residue, revealed that both enzymes are upregulated by NAC. EPR spin trapping further demonstrated that NAC enhances NO generation from cells. Long-term exposure to Cd(2+) contributes to DUSP4 degradation and the uncontrolled activation of p38 and ERK1/2, leading to apoptosis. Treatment with NAC prevents DUSP4 degradation and protects cells against Cd(2+)-induced apoptosis. Moreover, the increased DUSP4 expression can redox-regulate the p38 and ERK1/2 pathways from hyperactivation, providing a survival mechanism against the toxicity of Cd(2+). DUSP4 gene knockdown further supports the hypothesis that DUSP4 is an antioxidant gene, critical in the modulation of eNOS expression, and thus protects against Cd(2+)-induced stress. Depletion of intracellular GSH by buthionine sulfoximine makes cells more susceptible to Cd(2+)-induced apoptosis. Pretreatment with NAC prevents p38 overactivation and thus protects the endothelium from this oxidative stress. Therefore, the identification of DUSP4 activation by NAC provides a novel target for future drug design.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4146716 | PMC |
http://dx.doi.org/10.1016/j.freeradbiomed.2014.06.016 | DOI Listing |
Bioengineering (Basel)
December 2024
Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria.
Hyaluronic acid was proposed to support soft tissue recession surgery and guided tissue regeneration. The molecular mechanisms through which hyaluronic acid modulates the response of connective tissue cells remain elusive. To elucidate the impact of hyaluronic acid on the connective tissue cells, we used bulk RNA sequencing to determine the changes in the genetic signature of gingival fibroblasts exposed to 1.
View Article and Find Full Text PDFEur Rev Med Pharmacol Sci
December 2024
Department of Oral Biological and Medical Sciences, Faculty of Dentistry, The University of British Columbia, Vancouver, BC, Canada.
Objective: Monoamine oxidase (MAO) inhibitors reduce inflammation in a number of in vitro and in vivo models. This finding led to the development of a novel MAO-B selective inhibitor (RG0216) designed to reduce blood-brain barrier penetration. To elucidate RG0216's regulatory role in inflammation-relevant signaling pathways, we employed a transcriptome analytic approach to identify genes that are differentially regulated by RG0216 and then globally identified which inflammation-relevant biological signaling pathways were altered by this drug.
View Article and Find Full Text PDFAnticancer Res
January 2025
Department of Pathology, Herlev Hospital, University of Copenhagen, Herlev, Denmark
Background/aim: Ovarian cancer (OC) is one of the leading gynecological causes of death among women. The current standard treatment for OC is debulking surgery followed by platinum-based chemotherapy treatments; however, despite initial success to treatment many patients experience relapses. Currently, there are no available tests to predict sensitivity or resistance to chemotherapy.
View Article and Find Full Text PDFMol Neurobiol
December 2024
Department of Emergency Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China.
Astrocytes are abundant glial cells in the central nervous system (CNS) that play important roles in brain injury following cardiac arrest (CA). Following brain ischemia, astrocytes trigger endogenous neuroprotective mechanisms, such as fatty acid transport. Lipid droplets (LDs) are cellular structures involved in neutral lipid storage and play essential roles in many biological processes.
View Article and Find Full Text PDFBMC Cancer
December 2024
The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China.
Background: Radiotherapy (RT) is an important means of local treatment of solid tumors, and radioresistance is the main reason for RT failure for tumors, especially pancreatic cancer (PC). It is urgent to distinguish key genes and mechanisms of radioresistance in PC.
Methods: We acquired the data from The Cancer Genome Atlas (TCGA), obtained the gene modules associated with radioresistance by weighted gene coexpression network analysis (WGCNA), and identified differentially expressed genes (DEGs) between normal and tumor samples.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!