The regulator of G protein signaling 2 (RGS2) is a potent negative regulator of Gq protein signals including the angiotensin II (AngII)/AngII receptor signal, which plays a critical role in the progression of fibrosis. However, the role of RGS2 on the progression of kidney fibrosis has not been assessed. Here, we investigated the role of RGS2 in kidney fibrosis induced by unilateral ureteral obstruction (UUO) in mice. UUO resulted in increased expression of RGS2 mRNA and protein in the kidney along with increases of AngII and its type 1 receptor (AT1R) signaling and fibrosis. Furthermore, UUO increased the levels of F4/80, Ly6G, myeloperoxidase, and CXCR4 in the kidneys. RGS2 deficiency significantly enhanced these changes in the kidney. RGS2 deletion in the bone marrow-derived cells by transplanting the bone marrow of RGS2 knock-out mice into wild type mice enhanced UUO-induced kidney fibrosis. Overexpression of RGS2 in HEK293 cells, a human embryonic kidney cell line, and RAW264.7 cells, a monocyte/macrophage line, inhibited the AngII-induced activation of ERK and increase of CXCR4 expression. These findings provide the first evidence that RGS2 negatively regulates the progression of kidney fibrosis following UUO, likely by suppressing fibrogenic and inflammatory responses through the inhibition of AngII/AT1R signaling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbadis.2014.06.022 | DOI Listing |
Phytother Res
January 2025
Laboratory of Immunology and Inflammation, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China.
Renal fibrosis is the most common pathway for the development of end-stage renal disease (ESRD) in various kidney diseases. Currently, the treatment options for renal fibrosis are limited. Ferroptosis is iron-mediated lipid peroxidation, triggered mainly by iron deposition and ROS generation.
View Article and Find Full Text PDFUnlabelled: The ECM is a complex and dynamic meshwork of proteins that forms the framework of all multicellular organisms. Protein interactions within the ECM are critical to building and remodeling the ECM meshwork, while interactions between ECM proteins and cell surface receptors are essential for the initiation of signal transduction and the orchestration of cellular behaviors. Here, we report the development of MatriCom, a web application ( https://matrinet.
View Article and Find Full Text PDFChin J Integr Med
January 2025
Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
Objective: To identify the underlying molecular mechanism of Modified Hu-Lu-Ba-Wan (MHW) in alleviating renal lesions in mice with diabetic kidney disease (DKD).
Methods: The db/db mice were divided into model group and MHW group according to a random number table, while db/m mice were settled as the control group (n=8 per group). The control and model groups were gavaged daily with distilled water [10 mL/(kg·d)], and the MHW group was treated with MHW [17.
Drug Discov Today
January 2025
Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan-333031, India. Electronic address:
Cardiorenal syndrome (CRS) is an interdependent dysfunction of the heart and kidneys, where failure in one organ precipitates failure in the other. The pathophysiology involves sustained renin-angiotensin-aldosterone-system (RAAS) activation, mitochondrial dysfunction, inflammation, fibrosis, oxidative stress and tissue remodeling, culminating in organ dysfunction. Existing therapies targeting the RAAS, diuretics and other agents have limitations, including diuretic resistance and compensatory sodium reabsorption.
View Article and Find Full Text PDFPLoS One
January 2025
VA Research, Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, Texas, United States of America.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!