Regulator of G protein signaling 2 (RGS2) deficiency accelerates the progression of kidney fibrosis.

Biochim Biophys Acta

Department of Anatomy, Cardiovascular Research Institute, BK21 Plus Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu 700-422, Republic of Korea. Electronic address:

Published: September 2014

The regulator of G protein signaling 2 (RGS2) is a potent negative regulator of Gq protein signals including the angiotensin II (AngII)/AngII receptor signal, which plays a critical role in the progression of fibrosis. However, the role of RGS2 on the progression of kidney fibrosis has not been assessed. Here, we investigated the role of RGS2 in kidney fibrosis induced by unilateral ureteral obstruction (UUO) in mice. UUO resulted in increased expression of RGS2 mRNA and protein in the kidney along with increases of AngII and its type 1 receptor (AT1R) signaling and fibrosis. Furthermore, UUO increased the levels of F4/80, Ly6G, myeloperoxidase, and CXCR4 in the kidneys. RGS2 deficiency significantly enhanced these changes in the kidney. RGS2 deletion in the bone marrow-derived cells by transplanting the bone marrow of RGS2 knock-out mice into wild type mice enhanced UUO-induced kidney fibrosis. Overexpression of RGS2 in HEK293 cells, a human embryonic kidney cell line, and RAW264.7 cells, a monocyte/macrophage line, inhibited the AngII-induced activation of ERK and increase of CXCR4 expression. These findings provide the first evidence that RGS2 negatively regulates the progression of kidney fibrosis following UUO, likely by suppressing fibrogenic and inflammatory responses through the inhibition of AngII/AT1R signaling.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbadis.2014.06.022DOI Listing

Publication Analysis

Top Keywords

kidney fibrosis
20
regulator protein
12
progression kidney
12
rgs2
10
protein signaling
8
signaling rgs2
8
rgs2 deficiency
8
kidney
8
role rgs2
8
uuo increased
8

Similar Publications

Bergapten Ameliorates Renal Fibrosis by Inhibiting Ferroptosis.

Phytother Res

January 2025

Laboratory of Immunology and Inflammation, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China.

Renal fibrosis is the most common pathway for the development of end-stage renal disease (ESRD) in various kidney diseases. Currently, the treatment options for renal fibrosis are limited. Ferroptosis is iron-mediated lipid peroxidation, triggered mainly by iron deposition and ROS generation.

View Article and Find Full Text PDF

Unlabelled: The ECM is a complex and dynamic meshwork of proteins that forms the framework of all multicellular organisms. Protein interactions within the ECM are critical to building and remodeling the ECM meshwork, while interactions between ECM proteins and cell surface receptors are essential for the initiation of signal transduction and the orchestration of cellular behaviors. Here, we report the development of MatriCom, a web application ( https://matrinet.

View Article and Find Full Text PDF

Modified Hu-Lu-Ba-Wan Alleviates Early-Stage Diabetic Kidney Disease via Inhibiting Interleukin-17A in Mice.

Chin J Integr Med

January 2025

Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.

Objective: To identify the underlying molecular mechanism of Modified Hu-Lu-Ba-Wan (MHW) in alleviating renal lesions in mice with diabetic kidney disease (DKD).

Methods: The db/db mice were divided into model group and MHW group according to a random number table, while db/m mice were settled as the control group (n=8 per group). The control and model groups were gavaged daily with distilled water [10 mL/(kg·d)], and the MHW group was treated with MHW [17.

View Article and Find Full Text PDF

Novel therapeutic targets for cardiorenal syndrome.

Drug Discov Today

January 2025

Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan-333031, India. Electronic address:

Cardiorenal syndrome (CRS) is an interdependent dysfunction of the heart and kidneys, where failure in one organ precipitates failure in the other. The pathophysiology involves sustained renin-angiotensin-aldosterone-system (RAAS) activation, mitochondrial dysfunction, inflammation, fibrosis, oxidative stress and tissue remodeling, culminating in organ dysfunction. Existing therapies targeting the RAAS, diuretics and other agents have limitations, including diuretic resistance and compensatory sodium reabsorption.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how high glucose levels in diabetes lead to kidney cell damage through the activation of a signaling pathway involving DJ-1 and PTEN.
  • DJ-1 is found to be upregulated in kidney cells under high glucose conditions, which triggers the Akt/mTORC1 signaling pathway, resulting in cell growth and fibrosis.
  • The research indicates that inhibiting DJ-1 can prevent glucose-induced cell growth and damage, while overexpressing DJ-1 replicates the harmful effects, highlighting its role in renal injury related to diabetes.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!