Nitrous oxide (N2O) has become the prime ozone depleting atmospheric emission and the third most important anthropogenic greenhouse gas, with a global warming potential approximately 300 times higher than CO2. Nitrification and denitrification are processes responsible for N2O emission from the soil after nitrogen input. The application of a nitrification inhibitor can reduce N2O emissions from these processes. The objective of this study was to assess the effect of two different nitrification inhibitors (dicyandiamide (DCD) and a commercial formulation containing two pyrazole derivatives (PD), 1H-1,2,4-triazole and 3-methylpyrazole) on N2O emissions from cattle urine applications for summer grazing conditions in the UK. Experiments were conducted under controlled conditions in a laboratory incubator and under field conditions on a grassland soil. The N2O emissions showed similar temporal dynamics in both experiments. DCD concentration in the soil showed an exponential degradation during the experiment, with a half-life of the order of only 10d (air temperature c. 15 °C). DCD (10 kg ha(-1)) and PD at the highest application rate (3.76 kg ha(-1)) reduced N2O emissions by 13% and 29% in the incubation experiment and by 33% and 6% in the field experiment, respectively, although these reductions were not statistically significant (P>0.05). Under UK summer grazing conditions, these nitrification inhibitors appear to be less effective at reducing N2O emissions than reported for other conditions elsewhere in the literature, presumably due to the higher soil temperature.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2014.06.002DOI Listing

Publication Analysis

Top Keywords

n2o emissions
20
nitrification inhibitors
12
nitrous oxide
8
emissions cattle
8
cattle urine
8
summer grazing
8
grazing conditions
8
n2o
7
emissions
6
conditions
6

Similar Publications

How does forest fine root litter affect the agricultural soil NH and NO losses?

J Environ Manage

January 2025

State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China. Electronic address:

In farmland shelterbelt systems, the decomposition and/or apoptosis of forest fine root litter could affect farmland soil properties at the tree-crop interface, particularly the soil nitrogen (N) cycling. However, how fine root litter affect the ammonia (NH) and nitrous oxide (NO) losses from farmland soil and the crop production is little known. A soil column experiment covering a whole rice season was conducted to evaluate the dynamics aforesaid in response to fine root litter of Populus (RP) and Metasequoia glyptostroboides (RM) with 0 and 240 kg ha N fertilizer input.

View Article and Find Full Text PDF

Accelerating electron transfer reduces CH and CO emissions in paddy soil.

J Environ Manage

January 2025

Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs / Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA / Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, 300191, PR China. Electronic address:

As an accelerated electron transfer device, the influence of microbial electrochemical snorkel (MES) on soil greenhouse gas production remains unclear. Electron transport is the key to methane production and denitrification. We found that the NO amount of the MES treatment was comparable to the control however the cumulative CO and CH emissions were reduced by 50% and 41%, respectively.

View Article and Find Full Text PDF

The water-level fluctuation zones (WLFZ) in Three Gorges Reservoir encounter several ecological challenges, particularly potential greenhouse gas (GHG) emissions and water eutrophication due to water level variations. Therefore, to address those challenges, our study explores the relationships between soil properties (Phosphorus cycle), plant conditions, microbial community, and GHG emissions. Our findings reveal that aboveground plants are the key link in the WLFZ ecosystem, which has previously been overlooked.

View Article and Find Full Text PDF

Distinct response of nitrogen metabolism to exogenous cadmium (Cd) in river sediments with and without Cd contamination history.

Water Res

January 2025

Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.

The role of metal resistance on nitrogen metabolism function and community resilience against Cd is important for elucidating the evolutionary dynamics of key ecological functions in river ecosystems. In this study, the response of nitrogen transforming function to Cd exposure in river sediments from the Yangtze River Basin with varying levels of heavy metal contamination history (Cd-contaminated and Cd-free sediments) was compared to understand how Cd influenced nitrogen metabolism under varying metal resistance conditions. The results showed that chronic and persistent Cd pollution of sediments caused an elevation of transport efflux metal resistance genes (MRGs) and a reduction in the uptake MRGs, leading to a stronger tolerance to Cd for Cd-contaminated sediment than Cd-free ones.

View Article and Find Full Text PDF

Growing contribution to radiative forcing from China's on-farm nitrous oxide emissions requires more attention.

Sci Total Environ

January 2025

Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton South, Melbourne, Victoria 3169, Australia; Department of Agricultural Economics, University of the Free State, Bloemfontein 9300, South Africa.

Agricultural systems are important emission sources of non-CO greenhouse gases (GHGs), including the relatively short-lived GHG methane (CH). As a pivotal emitter, China's CH emissions have received wide attention. For the first time, this study applied an indicator of radiative forcing-based climate footprint (RFCF) to compare the climate impacts of China's on-farm non-CO GHG emissions including CH and nitrous oxide (NO).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!