Tolerogenic dendritic cells specific for β2-glycoprotein-I Domain-I, attenuate experimental antiphospholipid syndrome.

J Autoimmun

The Zabludowicz Center For Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Sackler Faculty of Medicine Tel-Aviv University, 52621, Israel. Electronic address:

Published: November 2014

Tolerogenic dendritic cells (tDCs) have the potential to control the outcome of autoimmunity by modulating the immune response. The aim of this study was to uncover the tolerance efficacy attributed to beta-2-glycoprotein-I (β2GPI) tDCs or β2GPI domain-I (D-I) and domain-V (D-V)-tDCs in mice with antiphospholipid syndrome (APS). tDCs were pulsed with β2GPI or D-I or D-V derivatives. Our results revealed that β2GPI related tDCs phenotype includes CD80(high), CD86(high) CD40(high) MHC class II(high). The miRNA profiling encompass miRNA 23b(high), miRNA 142-3p(low) and miRNA 221(low). In addition the β2GPI related tDCs showed reduced secretion of IL-1β, IL-12 and IL-23. D-I tDCs treatment was more efficient than β2GPI tDCs in inducing of tolerance in APS mice, manifested by lowered titers of anti- β2GPI antibodies (Abs) and reduced percentage of fetal loss. Tolerance induction was accompanied by poor T cell response to β2GPI, high numbers of CD4 + CD25 + FOXP3 + T-regulatory cells (Treg), reduced levels of IFNγ, IL-17 and increased expression of IL-10 and TGFβ. Tolerance was successfully transferred by Treg cells from the tolerized mice to β2GPI immunized mice. We conclude that predominantly D-I-tDCs and β2GPI tDCs have the potential to attenuate experimental APS by induction of Treg cells, reduction of anti- β2GPI Abs titers and increased expression of anti-inflammatory cytokines. We suggest that β2-GPI-D-I-tDCs may offer a novel approach for developing therapy for APS patients.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jaut.2014.06.001DOI Listing

Publication Analysis

Top Keywords

β2gpi tdcs
20
β2gpi
11
tolerogenic dendritic
8
dendritic cells
8
attenuate experimental
8
antiphospholipid syndrome
8
tdcs
8
tdcs potential
8
anti- β2gpi
8
increased expression
8

Similar Publications

Transcranial direct current stimulation (tDCS) has emerged as a potential adjunct therapy for post-stroke motor rehabilitation. While conventional rehabilitation methods remain the primary approach to improving motor function after stroke, many patients experience incomplete recovery, necessitating the exploration of additional interventions. This commentary article examines the role of tDCS in poststroke motor recovery, focusing on its mechanisms, efficacy, and limitations.

View Article and Find Full Text PDF

This review examines the therapeutic potential of neuromodulation methods, including neurofeedback, transcranial direct current stimulation (tDCS), and transcranial magnetic stimulation (TMS), as non-pharmacological interventions for children with attention-deficit/hyperactivity disorder (ADHD). A comprehensive review of current studies was conducted, focusing on each technique's mechanism, application, and efficacy in managing ADHD symptoms and cognitive deficits. Studies included human participants with ADHD, evaluating changes in symptom severity and cognitive outcomes.

View Article and Find Full Text PDF

Temporal interference stimulation (TIS) is a new form of transcranial electrical stimulation (tES) that has been proposed as a method for targeted, noninvasive stimulation of deep brain structures. While TIS holds promise for a variety of clinical and nonclinical applications, little data is yet available regarding its effects in humans and its mechanisms of action. To inform the design and safe conduct of experiments involving TIS, researchers require quantitative guidance regarding safe exposure limits and other safety considerations.

View Article and Find Full Text PDF

Altered Neural Responses to Punishment Learning in Conduct Disorder.

Biol Psychiatry Cogn Neurosci Neuroimaging

January 2025

Department of Child and Adolescent Psychiatry, Faculty of Medicine, TUD Dresden University of Technology, German Center for Child and Adolescent Health (DZKJ), partner site Leipzig/Dresden, Dresden, Germany.

Objective: Conduct disorder (CD) is associated with deficits in the use of punishment for reinforcement learning (RL) and subsequent decision-making, contributing to reckless, antisocial, and aggressive behaviors. Here, we used functional magnetic resonance imaging (fMRI) to examine whether differences in behavioral learning rates derived from computational modeling, particularly for punishment, are reflected in aberrant neural responses in youths with CD compared to typically-developing controls (TDCs).

Methods: 75 youths with CD and 99 TDCs (9-18 years, 47% girls) performed a probabilistic RL task with punishment, reward, and neutral contingencies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!