Thyroid hormone insufficiency during neurodevelopment can result into significant structural and functional changes within the developing central nervous system (CNS), and is associated with the establishment of serious cognitive impairment and neuropsychiatric symptomatology. The aim of the present study was to shed more light on the effects of gestational and/or lactational maternal exposure to propylthiouracil (PTU)-induced hypothyroidism as a multilevel experimental approach to the study of hypothyroidism-induced changes on crucial brain enzyme activities of 21-day-old Wistar rat offspring in a brain region-specific manner. This experimental approach has been recently developed and characterized by the authors based on neurochemical analyses performed on newborn and 21-day-old rat offspring whole brain homogenates; as a continuum to this effort, the current study focused on two CNS regions of major significance for cognitive development: the frontal cortex and the hippocampus. Maternal exposure to PTU in the drinking water during gestation and/or lactation resulted into changes in the activities of acetylcholinesterase and two important adenosinetriphosphatases (Na(+),K(+)- and Mg(2+)-ATPase), that seemed to take place in a CNS-region-specific manner and that were dependent upon the PTU-exposure timeframe followed. As these findings are analyzed and compared to the available literature, they: (i) highlight the variability involved in the changes of the aforementioned enzymatic parameters in the studied CNS regions (attributed to both the different neuroanatomical composition and the thyroid-hormone-dependent neurodevelopmental growth/differentiation patterns of the latter), (ii) reveal important information with regards to the neurochemical mechanisms that could be involved in the way clinical hypothyroidism could affect optimal neurodevelopment and, ultimately, cognitive function, as well as (iii) underline the need for the adoption of more consistent approaches towards the experimental simulation of congenital and early-age-occurring hypothyroidism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11011-014-9581-9 | DOI Listing |
Am J Physiol Lung Cell Mol Physiol
January 2025
Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637.
Idiopathic pulmonary fibrosis is a fatal disease characterized by the TGF-β-dependent activation of lung fibroblasts, leading to excessive deposition of collagen proteins and progressive replacement of healthy lung with scar tissue. We and others have shown that TGF-β-mediated activation of the Mechanistic Target of Rapamycin Complex 1 (mTORC1) and downstream upregulation of Activating Transcription Factor 4 (ATF4) promote metabolic reprogramming in lung fibroblasts characterized by upregulation of the de synthesis of glycine, the most abundant amino acid found in collagen protein. Whether mTOR and ATF4 regulate other metabolic pathways in lung fibroblasts has not been explored.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Aix Marseille Univ, INSERM, MMG (Marseille Medical Genetics), Marseille, France.
Anterior Hox genes are required for genetic identity and anterior posterior patterning of the second heart field (SHF), which contributes to the formation of the embryonic heart in vertebrates. Defective contribution of SHF cells to the arterial or venous pole of the heart is often associated with severe congenital heart defects. The mouse Cre-lox system allows the activation of expression of any gene of interest in restricted tissues.
View Article and Find Full Text PDFCancer Chemother Pharmacol
January 2025
Service de Génomique des Tumeurs et Pharmacologie, Hôpital Saint-Louis, Assistance Publique Hôpitaux de Paris, Paris, France.
The enzyme dihydropyrimidine dehydrogenase (DPD) is the primary catabolic pathway of fluoropyrimidines including 5 fluorouracil (5FU) and capecitabine. Cases of lethal toxicity have been reported in cancer patients with complete DPD deficiency receiving standard dose of 5FU or capecitabine. DPD is encoded by the pharmacogene DPYD in which more than 200 variants have been identified.
View Article and Find Full Text PDFJ Virol
December 2024
Department of Animal Science, Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut, USA.
Unlabelled: Porcine reproductive and respiratory syndrome (PRRS) remains a major threat to animal health and causes substantial economic losses worldwide. The nonstructural protein 11 (NSP11) of the causative agent, PRRS virus (PRRSV), contains a highly conserved nidoviral uridylate-specific endoribonuclease (NendoU) domain essential for viral replication and immune evasion. Targeting NSP11 offers a novel approach to antiviral intervention.
View Article and Find Full Text PDFACS Sens
January 2025
Hubei Key Laboratory of Genetic Regulation & Integrative Biology, Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, School of Life Sciences, Central China Normal University, Wuhan 430079, China.
Heme oxygenase-1 (HO-1) catalyzes heme degradation on the consumption of NADPH and molecular oxygen. As an inducible enzyme, HO-1 is highly induced in various disease states, including cancer. Currently, two fluorescent probes for HO-1 have been designed based on the catalytic activity of HO-1, in which the probes serve as a substrate, so NADPH is required to enable the detection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!