Resonances in the photoabsorption spectrum of the generating medium can modify the spectrum of high-order harmonics. In particular, window-type Fano resonances can reduce photoabsorption within a narrow spectral region and, consequently, lead to an enhanced emission of high-order harmonics in absorption-limited generation conditions. For high harmonic generation in argon it is shown that the 3s3p(6)np(1)P(1) window resonances (n = 4, 5, 6) give rise to enhanced photon yield. In particular, the 3s3p(6)4p(1)P(1) resonance at 26.6 eV allows a relative enhancement up to a factor of 30 in a 100 meV bandwidth compared to the characteristic photon emission of the neighboring harmonic order. This enhanced, spectrally isolated, and coherent photon emission line has a relative energy bandwidth of only ΔE/E = 3 × 10(-3). Therefore, it might be very useful for applications such as precision spectroscopy or coherent diffractive imaging. The presented mechanism can be employed for tailoring and controlling the high harmonic emission of manifold target materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.112.233002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!