Multiple roles for NaV1.9 in the activation of visceral afferents by noxious inflammatory, mechanical, and human disease-derived stimuli.

Pain

Wingate Institute of Neurogastroenterology, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AJ, UK; National Centre for Bowel Research and Surgical Innovation, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK. Electronic address:

Published: October 2014

Chronic visceral pain affects millions of individuals worldwide and remains poorly understood, with current therapeutic options constrained by gastrointestinal adverse effects. Visceral pain is strongly associated with inflammation and distension of the gut. Here we report that the voltage-gated sodium channel subtype NaV1.9 is expressed in half of gut-projecting rodent dorsal root ganglia sensory neurons. We show that NaV1.9 is required for normal mechanosensation, for direct excitation and for sensitization of mouse colonic afferents by mediators from inflammatory bowel disease tissues, and by noxious inflammatory mediators individually. Excitatory responses to ATP or PGE2 were substantially reduced in NaV1.9(-/-) mice. Deletion of NaV1.9 substantially attenuates excitation and subsequent mechanical hypersensitivity after application of inflammatory soup (IS) (bradykinin, ATP, histamine, PGE2, and 5HT) to visceral nociceptors located in the serosa and mesentery. Responses to mechanical stimulation of mesenteric afferents were also reduced by loss of NaV1.9, and there was a rightward shift in stimulus-response function to ramp colonic distension. By contrast, responses to rapid, high-intensity phasic distension of the colon are initially unaffected; however, run-down of responses to repeat phasic distension were exacerbated in NaV1.9(-/-) afferents. Finally colonic afferent activation by supernatants derived from inflamed human tissue was greatly reduced in NaV1.9(-/-) mice. These results demonstrate that NaV1.9 is required for persistence of responses to intense mechanical stimulation, contributes to inflammatory mechanical hypersensitivity, and is essential for activation by noxious inflammatory mediators, including those from diseased human bowel. These observations indicate that NaV1.9 represents a high-value target for development of visceral analgesics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4220011PMC
http://dx.doi.org/10.1016/j.pain.2014.06.015DOI Listing

Publication Analysis

Top Keywords

noxious inflammatory
12
inflammatory mechanical
8
visceral pain
8
nav19 required
8
inflammatory mediators
8
reduced nav19-/-
8
nav19-/- mice
8
mechanical hypersensitivity
8
mechanical stimulation
8
phasic distension
8

Similar Publications

Neurogenic inflammation and itch in barrier tissues.

Semin Immunol

January 2025

Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy & Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA. Electronic address:

Once regarded as distinct systems, the nervous system and the immune system are now recognized for their complex interactions within the barrier tissues. The neuroimmune circuitry comprises a dual-network system that detects external and internal disturbances, providing critical information to tailor a context-specific response to various threats to tissue integrity, such as wounding or exposure to noxious and harmful stimuli like pathogens, toxins, or allergens. Using the skin as an example of a barrier tissue with the polarized sensory neuronal responses of itch and pain, we explore the molecular pathways driving neuronal activation and the effects of this activation on the immune response.

View Article and Find Full Text PDF

Among the various factors implicated in the pathogenesis of gastroesophageal reflux disease (GERD), visceral hypersensitivity and mucosal resistance have been recently re-evaluated in relation to the increasing phenomenon of proton pump inhibitor failure, particularly in patients with nonerosive reflux disease (NERD). Intensive research has allowed us to understand that noxious substances contained in the refluxate are able to interact with esophageal epithelium and to induce the elicitation of symptoms. The frequent evidence of microscopic esophagitis able to increase the permeability of the mucosa, the proximity of sensory afferent nerve fibers to the esophageal lumen favoring the higher sensitivity to noxious substances and the possible activation of inflammatory pathways interacting with sensory nerve endings are pathophysiological alterations confirming that mucosal resistance is impaired in GERD patients.

View Article and Find Full Text PDF

Electroacupuncture Mitigates TRPV1 Overexpression in the Central Nervous System Associated with Fibromyalgia in Mice.

Life (Basel)

December 2024

College of Chinese Medicine, Graduate Institute of Acupuncture Science, China Medical University, Taichung 40402, Taiwan.

Background: Fibromyalgia (FM) is characterized by chronic pain, significantly affecting the quality of life and functional capabilities of patients. In addition to pain, patients may experience insomnia, chronic fatigue, depression, anxiety, and headaches, further complicating their overall well-being. The Transient Receptor Potential Vanilloid 1 (TRPV1) receptor responds to various noxious stimuli and plays a key role in regulating pain sensitivity and inflammation.

View Article and Find Full Text PDF
Article Synopsis
  • High-mobility group box-1 (HMGB1) levels rise and undergo post-translational modifications (PTMs) with alcohol consumption, potentially influencing the development of alcohol-associated liver disease (AALD).
  • Researchers used a specific model of liver injury caused by alcohol to explore how manipulating HMGB1's expression and modifications in liver cells and immune cells impacts AALD.
  • Their findings show that different forms of HMGB1 have contrasting effects: oxidized HMGB1 (O) worsens liver injury while acetylated HMGB1 (Ac) can protect against these harmful effects, highlighting the importance of targeting O HMGB1 in treating AALD.
View Article and Find Full Text PDF

Introduction: The prostate is densely innervated like many visceral organs and glands. However, studies to date have focused on sympathetic and parasympathetic nerves and little attention has been given to the presence or function of sensory nerves in the prostate. Recent studies have highlighted a role for sensory nerves beyond perception of noxious stimuli, as anterograde release of neuropeptides from sensory nerves can affect vascular tone and local immune responses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!