The bilin-binding proteins (BBP) from lepidopteran insects are members of the lipocalin family of proteins and play a special role in pigmentation through the binding of biliverdin IXγ. Lopap, a BBP-like protein from the venom of the toxic caterpillar Lonomia obliqua has been reported to act as a serine protease that activates the coagulation proenzyme prothrombin. Here we show that BBPLo, a variant of lopap from the same organism binds biliverdin IXγ, forming a complex that is spectrally identical with previously described BBP proteins. Although BBPLo is nearly identical in sequence to lopap, no prothrombinase activity was detected in our recombinant preparations using reconstituted systems containing coagulation factors Xa and Va, as well as anionic phospholipids. In addition to biliverdin, BBPLo was found to form a 1:1 complex with heme prompting us to examine whether the unusual biliverdin IXγ ligand of BBPs forms as a result of oxidation of bound heme in situ rather than by a conventional heme oxygenase. Using ascorbate or a NADPH(+)-ferredoxin reductase-ferredoxin system as a source of reducing equivalents, spectral changes are seen that suggest an initial reduction of heme to the Fe(II) state and formation of an oxyferrous complex. The complex then disappears and a product identified as a 5-coordinate carbonyl complex of verdoheme, an intermediate in the biosynthesis of biliverdin, is formed. However, further reaction to form biliverdin was not observed, making it unlikely that biliverdin IXγ is formed by this pathway.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4074040 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0095424 | PLOS |
iScience
December 2024
Poltava State Medical University, Department of Pathophysiology, Poltava, Ukraine.
5-Aminolevulinic acid (5-ALA) is an essential compound in the biosynthesis of heme, playing a critical role in various physiological processes within the human body. This review provides the thorough analysis of the latest research on the molecular mechanisms and potential therapeutic benefits of 5-ALA in managing metabolic disorders. The ability of 5-ALA to influence immune response and inflammation, oxidative/nitrosative stress, antioxidant system, mitochondrial functions, as well as carbohydrate and lipid metabolism, is mediated by molecular mechanisms associated with the suppression of the transcription factor NF-κB signaling pathway, activation of the transcription factor Nrf2/heme oxygenase-1 (HO-1) system leading to the formation of heme-derived reaction products (carbon monoxide, ferrous iron, biliverdin, and bilirubin), which may contribute to HO-1-dependent cytoprotection through antioxidant and immunomodulatory effects.
View Article and Find Full Text PDFMolecules
December 2024
Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy.
Am J Hypertens
December 2024
Department of Physiology & Biophysics, Cardiovascular-Renal Research Center, Cardiorenal, and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS 39216 USA.
Background: Increased circulating bilirubin attenuates angiotensin (Ang) II-induced hypertension and improves renal hemodynamics. However, the intrarenal mechanisms that mediate these effects are not known. The goal of the present study was to test the hypothesis that bilirubin generation in the renal medulla plays a protective role against Ang II-induced hypertension.
View Article and Find Full Text PDFJ Phys Chem B
December 2024
Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States.
Sandercyanin is a mildly fluorescent biliprotein with a large Stokes shift, a tetrameric quaternary structure, and a biliverdin (BV) chromophore that does not covalently bond to the protein. To adapt this promising protein for use in bioimaging, it is necessary to produce monomeric mutants that retain the spectroscopic properties while increasing the fluorescence quantum yield. Modulating these properties through the protonation state of BV's propionic tails is a possible avenue, if detailed mechanistic information on the role of such chains becomes available.
View Article and Find Full Text PDFToxicol Appl Pharmacol
December 2024
Hanford Mission Integration Solutions, Richland, WA, USA. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!