The MYB transcription factors are involved in various plant biochemistry and physiology processes and play a central role in plant defense response. In the present study, a full-length cDNA sequence of a MYB gene, designated as SpMYB, was isolated from tomato. SpMYB encodes the R2R3-type protein consisting of 328 amino acids. The expression level of SpMYB was strongly induced by fungal pathogens. Transgenic tobacco plants overexpressing SpMYB had an enhanced salt and drought stress tolerance compared with wild-type plants, and showed significantly improved resistance to Alternaria alternate. Further analysis revealed that transgenic tobaccos exhibited less accumulation of malondialdehyde (MDA) and more accumulation of superoxide dismutase (SOD), peroxidase (POD) and phenylalanine ammonia-lyase (PAL) after inoculation with A. alternate. Meanwhile, changes in some photosynthetic parameters, such as photosynthetic rate (Pn), transpiration rate (Tr) and intercellular CO2 concentration (Ci) were also found in the transgenic tobaccos. Furthermore, transgenic tobaccos constitutively accumulated higher levels of pathogenesis-related (PR) gene transcripts, such as PR1 and PR2. The results suggested that the tomato SpMYB transcription factor plays an important role in responses to abiotic and biotic stress.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.gene.2014.06.049 | DOI Listing |
Int J Biol Macromol
December 2024
Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China; College of Agriculture, Guizhou Engineering Research Center for Fruit Crops, Guizhou University, Guiyang 550025, Guizhou Province, China. Electronic address:
Low nitrogen stress significantly limits crop production. The role of NRT1.7 as a nitrate transporter in alleviating low nitrogen stress in apple (Malus domestica) remains unclear.
View Article and Find Full Text PDFMol Plant Pathol
January 2025
Facility Horticultural Laboratory of Universities in Shandong, Weifang University of Science and Technology, Shouguang, Shandong, China.
Two phylogenetically unrelated viruses transmitted by different insect vectors, tomato spotted wilt virus (TSWV) and tomato yellow leaf curl virus (TYLCV), are major threats to tomato and other vegetable production. Although co-infections of TSWV and TYLCV on the same host plant have been reported on numerous occasions, there is still lack of research attempting to elucidate the mechanisms underlying the relationship between two viruses when they coexist in the same tomato or other plants. After assessing the effect of four TSWV-coded proteins on suppressing TYLCV in TSWV N transgenic Nicotiana benthamiana seedlings, the TSWV N protein proved to be effective in reducing TYLCV quantity and viral symptoms.
View Article and Find Full Text PDFTransgenic Res
December 2024
College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
Agrobacterium-mediated transformation of plants often results in the integration of multiple copies of T-DNA and backbone DNA from binary vectors into the host genome. However, the interplay between T-DNA and backbone DNA remains elusive. In this study, 70.
View Article and Find Full Text PDFIran J Biotechnol
July 2024
Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
Background: RNA silencing-based antiviral breeding is a promising strategy for developing virus-resistant plants.
Objectives: This study employed viral sense, anti-sense, and hairpin constructs to induce resistance against beet curly top virus (BCTV) and beet curly top Iran virus (BCTIV).
Materials And Methods: For this purpose, a 120-bp conserved sequence of Rep- and C2-BCTV and a 222-bp conserved sequence of CP-, Reg-, and MP-BCTIV were selected for construct production.
Plant Physiol Biochem
December 2024
College of Horticulture, Qingdao Agricultural University, Qingdao, Shandong, 266109, China. Electronic address:
Cold stress significantly limits the growth and yield of tea plants (Camellia sinensis (L.) O. Kuntze), particularly in northern China, may lead to huge economic losses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!