The growth of new blood vessels by angiogenesis is essential for normal development, but can also cause or contribute to the pathology of numerous diseases. Recent studies have shown that BIM, a pro-apoptotic BCL2-family protein, is required for endothelial cell apoptosis in vivo, and can contribute to the anti-angiogenic effect of VEGF-A inhibitors in certain tumor models. Despite its importance, the extent to which BIM is autonomously required for physiological endothelial apoptosis remains unknown and its regulation under such conditions is poorly defined. While the transcription factor FOXO3 has been proposed to induce Bim in response to growth factor withdrawal, evidence for this function is circumstantial. We report that apoptosis was reduced in Bim(-/-) primary endothelial cells, demonstrating a cell-autonomous role for BIM in endothelial death following serum and growth factor withdrawal. In conflict with in vitro studies, BIM-dependent endothelial death in vivo did not require FOXO3. Moreover, endothelial apoptosis proceeded normally in mice lacking FOXO-binding sites in the Bim promoter. Bim mRNA was upregulated in endothelial cells starved of serum and growth factors and this was accompanied by the downregulation of miRNAs of the miR-17∼92 cluster. Bim mRNA levels were also elevated in miR-17∼92(+/-) endothelial cells cultured under steady-state conditions, suggesting that miR-17∼92 cluster miRNAs may contribute to regulating overall Bim mRNA levels in endothelial cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4211375 | PMC |
http://dx.doi.org/10.1038/cdd.2014.90 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!