Response of soil-associated microbial communities to intrusion of coal mine-derived acid mine drainage.

Environ Sci Technol

Department of Biology, ‡Integrated Biosciences Program, and §Department of Geosciences, The University of Akron, Akron, Ohio 44325, United States.

Published: October 2015

AI Article Synopsis

  • A system has been found where acid mine drainage (AMD) from coal mines flows over soil, promoting the growth of bacteria that oxidize Fe(II) and form iron-rich deposits called iron mounds.
  • This natural process occurs without human interference, suggesting that it could be used as a low-cost and eco-friendly method to remove Fe(II) from AMD.
  • Experiments showed that when pristine soil was exposed to AMD, microbial communities developed that enhanced Fe(II) oxidation, similar to those found in established iron mounds.

Article Abstract

A system has been identified in which coal mine-derived acid mine drainage (AMD) flows as a 0.5-cm-deep sheet over the terrestrial surface. This flow regime enhances the activities of Fe(II) oxidizing bacteria, which catalyze the oxidative precipitation of Fe from AMD. These activities give rise to Fe(III) (hydr)oxide-rich deposits (referred to as an iron mound) overlying formerly pristine soil. This iron mound has developed with no human intervention, indicating that microbiological activities associated with iron mounds may be exploited as an inexpensive and sustainable approach to remove Fe(II) from AMD. To evaluate the changes in microbial activities and communities that occur when AMD infiltrates initially pristine soil, we incubated AMD-unimpacted soil with site AMD. Continuous exposure of soil to AMD induced progressively greater rates of Fe(II) biooxidation. The development of Fe(II) oxidizing activities was enhanced by inoculation of soil with microorganisms associated with mature iron mound sediment. Evaluation of pyrosequencing-derived 16S rRNA gene sequences recovered from incubations revealed the development of microbial community characteristics that were similar to those of the mature iron mound sediment. Our results indicate that upon mixing of AMD with pristine soil, microbial communities develop that mediate rapid oxidative precipitation of Fe from AMD.

Download full-text PDF

Source
http://dx.doi.org/10.1021/es502261uDOI Listing

Publication Analysis

Top Keywords

iron mound
16
pristine soil
12
microbial communities
8
coal mine-derived
8
mine-derived acid
8
acid mine
8
mine drainage
8
amd
8
feii oxidizing
8
oxidative precipitation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!