This investigation was designed to measure aerobic capacity (V̇o2peak) during and after long-duration International Space Station (ISS) missions. Astronauts (9 males, 5 females: 49 ± 5 yr, 77.2 ± 15.1 kg, 40.6 ± 6.4 ml·kg(-1)·min(-1) [mean ± SD]) performed peak cycle tests ∼90 days before flight, 15 days after launch, every ∼30 days in-flight, and on recovery days 1 (R + 1), R + 10, and R + 30. Expired metabolic gas fractions, ventilation, and heart rate (HR) were measured. Data were analyzed using mixed-model linear regression. The main findings of this study were that V̇o2peak decreased early in-flight (∼17%) then gradually increased during flight but never returned to preflight levels. V̇o2peak was lower on R + 1 and R + 10 than preflight but recovered by R + 30. Peak HR was not different from preflight at any time during or following flight. A sustained decrease in V̇o2peak during and/or early postflight was not a universal finding in this study, since seven astronauts were able to attain their preflight V̇o2peak levels either at some time during flight or on R + 1. Four of these astronauts performed in-flight exercise at higher intensities compared with those who experienced a decline in V̇o2peak, and three had low aerobic capacities before flight. These data indicate that, while V̇o2peak may be difficult to maintain during long-duration ISS missions, aerobic deconditioning is not an inevitable consequence of long-duration spaceflight.

Download full-text PDF

Source
http://dx.doi.org/10.1152/japplphysiol.01251.2013DOI Listing

Publication Analysis

Top Keywords

long-duration spaceflight
8
iss missions
8
time flight
8
v̇o2peak
7
flight
5
peak exercise
4
exercise oxygen
4
oxygen uptake
4
long-duration
4
uptake long-duration
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!