Purpose: Ischemic insults give rise to severe visual deficits after blood vessel occlusion. In this study we investigated the effects of retinal stroke on the direction-selective circuit of the inner retina in a new adult mouse model.
Methods: The inner retinal blood flow was interrupted for 60 minutes by ligating the ophthalmic arteries and veins in the optic nerve sheath. The optokinetic response (OKR) was measured to assess ischemia/reperfusion-mediated functional deficits and structural changes were studied by immunohistochemistry.
Results: Ischemia/reperfusion induced reactive gliosis and degeneration of the inner retina. The OKR was almost completely abolished from 7 days after reperfusion, whereas approximately 40% of retinal ganglion cells were still alive. Ischemia led to severe degeneration of the processes of starburst amacrine cells (SAC), which cell bodies are in the ganglion cell layer (ON SACs), and to a lesser extent of the dendrites of SACs, which cell bodies are in the inner nuclear layer (OFF SACs). In addition, the elimination of retinal ganglion cells, direction-selective ganglion cells, and ON SACs was much greater at 10 days and 21 days than that of OFF SACs. After reperfusion, P-Stat3 was transiently activated in ganglion cells, whereas P-Erk1/2 signal was specifically detected in Müller glia.
Conclusions: These results show a pronounced destruction of the ON direction-selective circuit in the inner retina that correlated with the irreversible loss of the OKR early after ischemia/reperfusion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1167/iovs.14-14521 | DOI Listing |
Cephalalgia
January 2025
Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ, USA.
Background: Women with endometriosis are more likely to have migraine. The mechanisms underlying this co-morbidity are unknown. Prolactin, a neurohormone secreted and released into circulation from the anterior pituitary, can sensitize sensory neurons from female, but not male, rodents, monkeys and human donors.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Biológica Ranwel Caputto. Córdoba, Argentina.
Purpose: Stress granules (SGs) are cytoplasmic biocondensates formed in response to various cellular stressors, contributing to cell survival. Although implicated in diverse pathologies, their role in retinal degeneration (RD) remains unclear. We aimed to investigate SG formation in the retina and its induction by excessive LED light in an RD model.
View Article and Find Full Text PDFJ Neurol
January 2025
Jacobs Comprehensive MS Treatment and Research Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA.
Background: Previous investigations on optical coherence tomography (OCT) in multiple sclerosis (MS) focused on generalizable macular and peri-papillary regions without considering the anatomic variations of the retinal layer thickness.
Objective: This study aimed to assess the utility of parafoveal retinal layer thickness measured by OCT, underscoring its relationships with clinical outcomes in MS.
Methods: In this cross-sectional study, 214 people with MS (pwMS) and 57 age- and sex-matched healthy controls (HCs) were enrolled.
J Neurol
January 2025
Department of Medical and Surgical Sciences, University of Foggia, 71122, Foggia, Italy.
Background: Multiple sclerosis (MS) involves a complex interplay between immune-mediated inflammation and neurodegeneration. Recent advances in biomarker research have provided new insights into the molecular underpinnings of MS, including ferritin, neurogranin, Triggering Receptor Expressed on Myeloid cells 2 (TREM2), and neurofilaments light chain.
Objectives: This pilot study aims to investigate the levels of these biomarkers in the cerebrospinal fluid (CSF) of MS patients and explore their associations with clinical, cognitive, and optical coherence tomography (OCT) parameters.
Elife
January 2025
Department of Neurology, University of Iowa, Iowa City, United States.
The role of striatal pathways in cognitive processing is unclear. We studied dorsomedial striatal cognitive processing during interval timing, an elementary cognitive task that requires mice to estimate intervals of several seconds and involves working memory for temporal rules as well as attention to the passage of time. We harnessed optogenetic tagging to record from striatal D2-dopamine receptor-expressing medium spiny neurons (D2-MSNs) in the indirect pathway and from D1-dopamine receptor-expressing MSNs (D1-MSNs) in the direct pathway.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!