Charge-pair interactions between acidic and basic residues on the surface of collagen can promote stability as well as control specificity of molecular recognition. Heterotrimeric collagen peptides have been engineered de novo using either rational or computational methods, which in both cases optimize networks of favorable charge-pair interactions in the target structure. Less understood is the role of electrostatic repulsion between groups of like charge in destabilizing structure or directing molecular recognition. To study this, we apply a "charge crowding" approach, where repulsive interactions between multiple aspartate side chains are found to destabilize the homotrimer states in triple helical peptide system and can be utilized to promote the formation of heterotrimers. Neutralizing surface charge by increasing salt concentration or decreasing pH can enhance homotrimer stability, confirming the role of charge crowding on the destabilization of homotrimers via electrostatic repulsion. Charge crowding may be used in conjunction with other approaches to create specific collagen heterotrimers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4030969 | PMC |
http://dx.doi.org/10.3390/biom3040986 | DOI Listing |
Biomolecules
October 2024
Institute of Medical Physics, University of Szeged, 6720 Szeged, Hungary.
The pH dependence of the free energy level of the flash-induced primary charge pair PI was determined by a combination of the results from the indirect charge recombination of PQ and from the delayed fluorescence of the excited dimer (P*) in the reaction center of the photosynthetic bacterium , where the native ubiquinone at the primary quinone binding site Q was replaced by low-potential anthraquinone (AQ) derivatives. The following observations were made: (1) The free energy state of PI was pH independent below pH 10 (-370 ± 10 meV relative to that of the excited dimer P*) and showed a remarkable decrease (about 20 meV/pH unit) above pH 10. A part of the dielectric relaxation of the PI charge pair that is not insignificant (about 120 meV) should come from protonation-related changes.
View Article and Find Full Text PDFJ Am Chem Soc
August 2024
Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, India.
The interactions between glycosaminoglycans (GAGs) and proteins are essential in numerous biochemical processes that involve ion-pair interactions. However, there is no evidence of direct and specific interactions between GAGs and collagen proteins in native cartilage. The resolution of solid-state NMR (ssNMR) can offer such information but the detection of GAG interactions in cartilage is limited by the sensitivity of the experiments when C and N isotopes are at natural abundance.
View Article and Find Full Text PDFBiomacromolecules
November 2023
Department of Chemistry, Rice University, Houston, Texas 77005, United States.
Collagen mimetic peptides are composed of triple helices. Triple helical formation frequently utilizes charge pair interactions to direct protein assembly. The design of synthetic triple helices is challenging due to the large number of competing species and the overall fragile nature of collagen mimetics.
View Article and Find Full Text PDFJ Am Chem Soc
May 2023
Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, China.
Whether and how an electron-hole pair at the donor-acceptor interface separates from their mutual Coulombic interaction has been a long-standing question for both fundamental interests and optoelectronic applications. This question is particularly interesting but yet to be unraveled in the emerging mixed-dimensional organic/2D semiconductor excitonic heterostructures where the Coulomb interaction is poorly screened. Here, by tracking the characteristic electroabsorption (Stark effect) signal from separated charges using transient absorption spectroscopy, we directly follow the electron-hole pair separation process in a model organic/2D heterostructure, vanadium oxide phthalocyanine/monolayer MoS.
View Article and Find Full Text PDFChem Sci
March 2022
Rice University, Department of Chemistry and Department of Bioengineering Houston TX 77005 USA
Collagens and their most characteristic structural unit, the triple helix, play many critical roles in living systems which drive interest in preparing mimics of them. However, application of collagen mimetic helices is limited by poor thermal stability, slow rates of folding and poor equilibrium between monomer and trimer. Covalent capture of the self-assembled triple helix can solve these problems while preserving the native three-dimensional structure critical for biological function.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!