Oleanolic acid (OA) is a nutritional component widely distributed in various vegetables. Although it has been well recognized for decades that OA exerts certain anti-tumor activity by inducing mitochondria-dependent apoptosis, it is still unclear that what molecular signaling is responsible for this effect. In this study, we employed cancer cell lines, A549, BXPC-3, PANC-1 and U2OS to elucidate the molecular mechanisms underlying OA anti- tumor activity. We found that activation of MAPK pathways, including p-38 MAPK, JNK and ERK, was triggered by OA in both a dose and time-dependent fashion in all the tested cancer cells. Activation was accompanied by cleavage of caspases and PARP as well as cytochrome C release. SB203580 (p38 MAPK inhibitor), but not SP600125 (JNK inhibitor) and U0126 (ERK inhibitor), rescued the pro-apoptotic effect of OA on A549 and BXPC- 3 cells. OA induced p38 MAPK activation promoted mitochondrial translocation of Bax and Bim, and inhibited Bcl-2 function by enhancing their phosphorylation. OA can induce reactive oxygen species (ROS)-dependent ASK1 activation, and this event was indispensable for p38 MAPK-dependent apoptosis in cancer cells. In vivo, p38 MAPK knockdown A549 tumors proved resistant to the growth-inhibitory effect of OA. Collectively, we elucidated that activation of ROS/ASK1/p38 MAPK pathways is responsible for the apoptosis stimulated by OA in cancer cells. Our finding can contribute to a better understanding of molecular mechanisms underlying the antitumor activity of nutritional components.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.7314/apjcp.2014.15.11.4519 | DOI Listing |
Biomol Biomed
December 2024
Otolaryngology Head and Neck Surgery, China Resources & Wisco General Hospital, Wuhan, Hubei, China.
Chlorogenic acid (CGA) exhibits promising anti-inflammatory properties, making it a potential therapeutic agent for inflammatory conditions and allergic rhinitis (AR). This study aimed to evaluate the therapeutic effects of CGA on inflammation in RAW264.7 macrophage cells and on AR in mice.
View Article and Find Full Text PDFClin Transl Med
January 2025
Department of Urology, Second Hospital of Tianjin Medical University, Tianjin, China.
Background: Atezolizumab plus bevacizumab has shown promising efficacy in advanced mucosal melanoma in the multi-centre phase II study. This report updates 3-year survival outcomes and multi-omics analysis to identify potential response biomarkers.
Methods: Forty-three intention-to-treat (ITT) patients received intravenous administration of atezolizumab and bevacizumab every 3 weeks.
Biol Pharm Bull
January 2024
Xiyuan Hospital, China Academy of Chinese Medical Sciences.
Idiopathic pulmonary fibrosis (PF) is an irreversible and chronic inflammatory condition with limited therapeutic options and a high mortality rate. We aimed to determine the possible role and mechanisms of wogonin (WGN) on PF. A rat model of PF was established with intratracheally administrated with bleomycin (BLM), followed by intravenously injecting with WGN and weekly body weight measurements for four weeks.
View Article and Find Full Text PDFJ Oral Biosci
January 2025
Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, Yahaba, Iwate, 028-3694, Japan. Electronic address:
Objectives: Temporomandibular joint (TMJ) osteoarthritis (OA) is an inflammatory disease that involves periarthritis of the TMJ and destruction of cartilage tissue in the mandibular condyle. However, the role of proinflammatory cytokines in the expression levels of matrix metalloproteinase (MMP) remains inconclusive. Thus, in this study, we aimed to investigate the effect of proinflammatory cytokines on the expression of MMPs.
View Article and Find Full Text PDFImmunol Rev
January 2025
Department of Internal Medicine and Paediatrics, Ghent University, Ghent, Belgium.
Inflammasomes are crucial mediators of both antimicrobial host defense and inflammatory pathology, requiring stringent regulation at multiple levels. This review explores the pivotal role of mitogen-activated protein kinase (MAPK) signaling in modulating inflammasome activation through various regulatory mechanisms. We detail recent advances in understanding MAPK-mediated regulation of NLRP3 inflammasome priming, licensing and activation, with emphasis on MAPK-induced activator protein-1 (AP-1) signaling in NLRP3 priming, ERK1 and JNK in NLRP3 licensing, and TAK1 in connecting death receptor signaling to NLRP3 inflammasome activation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!