Background: Linkage analysis on extended pedigrees is often challenged by the high computational demand of exact identity-by-descent (IBD) matrix reconstruction. When such an analysis becomes not feasible, two alternative solutions are contrasted: a full pedigree analysis based on approximate IBD estimation versus a pedigree splitting followed by exact IBD estimation. A multiple splitting (MS) approach, which combines linkage results across different splitting configurations, has been proposed to increase the power of single-split solutions.
Methods: To assess whether MS can achieve a comparable power to a full pedigree analysis, we compared the power of linkage on a very large pedigree in both simulated and real-case scenarios, using variance components linkage analysis of a dense SNP array.
Results: Our results confirm that the power to detect linkage is affected by the pedigree size. The MS approach showed higher power than the single-split analysis, but it was substantially less powerful than the full pedigree approach in both scenarios, at any level of significance and variance explained by a quantitative trait locus.
Conclusion: The MS approach should always be preferred to analyses based on a single split but, when adequate computational resources are available, a full pedigree analysis is better than the MS analysis. Rather than focusing on how to best split a pedigree, it might be more valuable to identify computational solutions that can make the IBD estimation of dense-marker maps practically feasible, thus allowing a full pedigree analysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000360623 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!