The proinflammatory cytokine interleukin (IL)-1β is implicated in the development of insulin resistance and β-cell dysfunction, whereas higher circulating levels of IL-1 receptor antagonist (IL-1RA), an endogenous inhibitor of IL-1β, has been suggested to improve glycemia and β-cell function in patients with type 2 diabetes. To elucidate the protective role of IL-1RA, this study aimed to identify genetic determinants of circulating IL-1RA concentration and to investigate their associations with immunological and metabolic variables related to cardiometabolic risk. In the analysis of seven discovery and four replication cohort studies, two single nucleotide polymorphisms (SNPs) were independently associated with circulating IL-1RA concentration (rs4251961 at the IL1RN locus [n = 13,955, P = 2.76 × 10(-21)] and rs6759676, closest gene locus IL1F10 [n = 13,994, P = 1.73 × 10(-17)]). The proportion of the variance in IL-1RA explained by both SNPs combined was 2.0%. IL-1RA-raising alleles of both SNPs were associated with lower circulating C-reactive protein concentration. The IL-1RA-raising allele of rs6759676 was also associated with lower fasting insulin levels and lower HOMA insulin resistance. In conclusion, we show that circulating IL-1RA levels are predicted by two independent SNPs at the IL1RN and IL1F10 loci and that genetically raised IL-1RA may be protective against the development of insulin resistance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4237993 | PMC |
http://dx.doi.org/10.2337/db14-0731 | DOI Listing |
Background: The association between serum uric acid (SUA) and dyslipidaemia is still unclear in patients with type 2 diabetes mellitus (T2DM). This study aimed to examine the association between SUA and dyslipidaemia and to explore whether there is an optimal SUA level corresponding to the lower risk of suffering from dyslipidaemia.
Research Design And Methods: This cross-sectional study included 1036 inpatients with T2DM and the clinical data were extracted from the hospital medical records.
Trends Endocrinol Metab
January 2025
School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia.
With the rising prevalence of type 2 diabetes mellitus (T2DM) and obesity, several previously under-recognised complications associated with T2DM are becoming more evident. The most common of these emerging complications are metabolic dysfunction-associated steatotic liver disease (MASLD), cancer, dementia, sarcopenia, and frailty, as well as other conditions involving the lung, heart, and intestinal tract. Likely causative factors are chronic inflammation and insulin resistance, whereas blood glucose levels appear to play a lesser role.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Hebei Province, Shijiazhuang, 050017, PR China. Electronic address:
Perfluorooctane sulfonate (PFOS), a prevalent perfluoroalkyl substance (PFAS), is widely present in various environmental media, animals, and even human bodies. It primarily accumulates in the liver, contributing to the disruption of hepatic metabolic homeostasis. However, the precise mechanism underlying PFOS-induced hepatic glucolipid metabolic disorders remains elusive.
View Article and Find Full Text PDFBiomed Pharmacother
January 2025
Laboratory of Clinical and Experimental Physiopathology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil.
Non-alcoholic fatty liver disease (NAFLD) is a common hepatic manifestation of metabolic syndrome affecting 20-30 % of the adult population worldwide. This disease, which includes simple steatosis and non-alcoholic steatohepatitis, poses a significant risk for cardiovascular and metabolic diseases. Lifestyle modifications are crucial in the treatment of NAFLD; however, patient adherence remains challenging.
View Article and Find Full Text PDFNeurosci Bull
January 2025
Center for Translational Neuromedicine and Neurology, School of Life Sciences, Institute for Brain Sciences Research, Henan University, Huaihe Hospital of Henan University, Kaifeng, 475004, China.
Parkinson's disease (PD), a chronic and common neurodegenerative disease, is characterized by the progressive loss of dopaminergic neurons in the dense part of the substantia nigra and abnormal aggregation of alpha-synuclein. Type 2 diabetes mellitus (T2DM) is a metabolic disease characterized by chronic insulin resistance and deficiency in insulin secretion. Extensive evidence has confirmed shared pathogenic mechanisms underlying PD and T2DM, such as oxidative stress caused by insulin resistance, mitochondrial dysfunction, inflammation, and disorders of energy metabolism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!