Large sequence polymorphisms (LSPs) or regions of differences (RDs) are molecular epidemiological and evolutionary markers used to classify Mycobacterium tuberculosis (MTB) into East Asian (Beijing), Indo-Oceanic (IO), Euro-American (EuA) and East African Indian (EAI) lineages. The most used method is separate PCR and sequencing for each RD. We developed a single-tube multiplex PCR using four primer pairs specific to the four MTB lineages and a primer pair for species-specific RD9 with genomic DNA extracted from isolated colonies. The single-tube multiplex PCR produced lineage-specific amplicon patterns capable of differentiating the four MTB lineages. Sensitivity and specificity of the assay were 100% when differentiating MTB lineages from other species and strains of bacteria. The limit of detection of genomic MTB DNA was 12.5 ng. This single-tube multiplex PCR method offers a simple, rapid and reliable method for classification of MTB lineages based on LSPs.

Download full-text PDF

Source

Publication Analysis

Top Keywords

single-tube multiplex
16
multiplex pcr
16
mtb lineages
16
mycobacterium tuberculosis
8
lineages based
8
large sequence
8
sequence polymorphisms
8
differentiating mtb
8
lineages
6
mtb
6

Similar Publications

Multiplex one-step direct asymmetric PCR of blood and dual-labelled probe-mediated melting curve for genotyping of MTHFR and MTRR polymorphisms.

RSC Adv

January 2025

Nanobiosensing and Microfluidic Point-of-Care Testing, Key Laboratory of Luzhou, Department of Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University Luzhou Sichuan 646000 PR China

Accurate, rapid, and multiplex SNP analysis holds significant clinical value. However, the inevitable nucleic acid extraction, involving centrifugation, heating, and magnetic separation, is often time-consuming. In this study, direct blood PCR was combined with dual-labelled probe-mediated melting curves to identify SNPs corresponding to MTHFR (C677T, rs#1801133 and A1298C, rs#1801131) and MTRR (A66G, rs#1801394) in a single tube.

View Article and Find Full Text PDF

A Multiplex High-Resolution Melting (HRM) assay to differentiate Fusarium graminearum chemotypes.

Sci Rep

December 2024

Cereal Disease Laboratory, Agricultural Research Service, US Department of Agriculture, St. Paul, MN, 55108, USA.

Fusarium graminearum is a primary cause of Fusarium head blight (FHB) on wheat and barley. The fungus produces trichothecene mycotoxins that render grain unsuitable for food, feed, or malt. Isolates of F.

View Article and Find Full Text PDF

MIRAAgo-Mediated Biosensor for Multiplex Human Enteroviruses Virus Typing Detection on HFMD.

ACS Synth Biol

December 2024

State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, Hubei University, Wuhan 430062, Hubei, China.

Hand, foot, and mouth disease (HFMD), caused by enteroviruses, mostly including EV71, CVA6, CVA10, and CVA16, is an acute infectious disease commonly found in children. Due to no approved antiviral therapies and available vaccines, except for EV71, developing accurate diagnostic methods of HFMD is essential for controlling its spread and mitigating its impact on public health. Here, we create a MIRA-HEV-PAND multiple nucleic acid typing method that utilizes Ago to identify enterovirus type A pathogens (EV71, CVA6, CVA10, and CVA16) and universal type EVU.

View Article and Find Full Text PDF

The role of the human papillomavirus (HPV) in the establishment of cervical cancer has driven studies to find more effective methods of viral detection so that early intervention strategies can be performed. However, the methods still have limitations, especially regarding detecting the different genotypes simultaneously. We have developed a high-throughput system using a single-tube nested-multiplex polymerase chain reaction (NMPCR) for the detection of 40 HPV genotypes using capillary electrophoresis.

View Article and Find Full Text PDF

Persistent infection with high-risk human papillomavirus (HR-HPV) is the principal etiological factor of cervical cancer. Considering the gradual progression of cervical cancer, the early, rapid, sensitive, and specific identification of HPV, particularly HR-HPV types, is crucial in halting the advancement of the illness. Here, we established a rapid, highly sensitive, and specific HR-HPV detection platform, leveraging the CRISPR/Cas12a assay in conjunction with multienzyme isothermal rapid amplification.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!