Filth flies, belonging to suborder Brachycera (Family; Muscidae, Calliphoridae and Sarcophagidae), are a major cause of nuisance and able to transmit pathogens to humans and animals. These insects are distributed worldwide and their populations are increasing especially in sub-tropical and tropical areas. One strategy for controlling insects employs Wolbachia, which is a group of maternally inherited intracellular bacteria, found in many insect species. The bacteria can cause reproductive abnormalities in their hosts, such as cytoplasmic incompatibility, feminization, parthenogenesis, and male lethality. In this study we determined Wolbachia endosymbionts in natural population of medically important flies (42 females and 9 males) from several geographic regions of Thailand. Wolbachia supergroups A or B were detected in 7 of female flies using PCR specific for wsp. Sequence analysis of wsp showed variations between and within the Wolbachia supergroup. Phylogenetics demonstrated that wsp is able to diverge between Wolbachia supergroups A and B. These data should be useful in future Wolbachia-based programs of fly control.
Download full-text PDF |
Source |
---|
Insects
December 2024
Department of Entomology, University of Minnesota, St. Paul, MN 55108, USA.
Bacterial and eukaryotic dihydrofolate reductase (DHFR) enzymes are essential for DNA synthesis and are differentially sensitive to the competitive inhibitors trimethoprim and methotrexate. Unexpectedly, trimethoprim did not reduce abundance, and the Stri DHFR homolog contained amino acid substitutions associated with trimethoprim resistance in . A phylogenetic tree showed good association of DHFR protein sequences with supergroup A and B assignments.
View Article and Find Full Text PDFFront Microbiol
January 2025
College of Forestry, Central South University of Forestry and Technology, Changsha, China.
Introduction: Phage WO represents the sole bacteriophage identified to infect , exerting a range of impacts on the ecological dynamics and evolutionary trajectories of its host. Given the extensive prevalence of across various species, phage WO is likely among the most prolific phage lineages within arthropod populations. To examine the diversity and evolutionary dynamics of phage WO, we conducted a screening for the presence of phage WO in -infected cricket species from China.
View Article and Find Full Text PDFBMC Microbiol
January 2025
Biology Centre of the Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czech Republic.
Background: The endosymbiotic relationship between Wolbachia bacteria and insects has been of interest for many years due to their diverse types of host reproductive phenotypic manipulation and potential role in the host's evolutionary history and population dynamics. Even though infection rates are high in Lepidoptera and specifically in butterflies, and reproductive manipulation is present in these taxa, less attention has been given to understanding how Wolbachia is acquired and maintained in their natural populations, across and within species having continental geographical distributions.
Results: We used whole genome sequencing data to investigate the phylogenetics, demographic history, and infection rate dynamics of Wolbachia in four species of the Spicauda genus of skipper butterflies (Lepidoptera: Hesperiidae), a taxon that presents sympatric and often syntopic distribution, with drastic variability in species abundance in the Neotropical region.
Vet Res Commun
December 2024
Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil.
Wolbachia is an intracellular endosymbiont bacterium found in nematodes and arthopods. Regarding mites, the Wolbachia supergroup U has been described based on strains found in the genus Spinturnix. In this study, ten specimens of Periglischrus iheringi (Mesostigmata: Spinturnicidae), collected from Artibeus obscurus (Chiroptera: Phyllostomidae) in Santa Catarina State, were found to be infected with Wolbachia.
View Article and Find Full Text PDFbioRxiv
December 2024
Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, USA.
is the most widespread animal-associated intracellular microbe, living within the cells of over half of insect species. Since they can suppress pathogen replication and spread rapidly through insect populations, is at the vanguard of public health initiatives to control mosquito-borne diseases. 's abilities to block pathogens and spread quickly are closely linked to their abundance in host tissues.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!