Neuroblastoma is the most common and deadly solid tumor in children, and there is currently no effective treatment available for neuroblastoma patients. The repressor element-1 silencing transcription (REST) factor has been found to play important roles in the regulation of neural differentiation and tumorigenesis. Recently, a REST signature consisting of downstream targets of REST has been reported to have clinical relevance in both breast cancer and glioblastoma. However it remains unclear how the REST signature works in neuroblastoma. Publicly available datasets were mined and bioinformatic approaches were used to investigate the utility of the REST signature in neuroblastoma with both preclinical and real patient data. The REST signature was found to be associated with drug sensitivity in neuroblastoma cell lines. Further, neuroblastoma patients with enhanced REST activity are significantly associated with higher clinical stages. Loss of heterozygosity on chromosome 11q23, which occurs in a large subset of high-risk neuroblastomas, tends to be correlated with high REST activity, with marginal significance. In conclusion, the REST signature has important implications for targeted therapy, and it is a prognostic factor in neuroblastoma patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4139778PMC
http://dx.doi.org/10.3390/ijms150711220DOI Listing

Publication Analysis

Top Keywords

rest signature
20
neuroblastoma patients
12
rest
10
neuroblastoma
9
drug sensitivity
8
sensitivity neuroblastoma
8
neuroblastoma cell
8
cell lines
8
rest activity
8
signature
6

Similar Publications

Motivation: The increasing accessibility of large-scale protein sequences through advanced sequencing technologies has necessitated the development of efficient and accurate methods for predicting protein function. Computational prediction models have emerged as a promising solution to expedite the annotation process. However, despite making significant progress in protein research, graph neural networks face challenges in capturing long-range structural correlations and identifying critical residues in protein graphs.

View Article and Find Full Text PDF

Sickle cell disease (SCD) is the most common genetic disease in the world and a societal challenge. SCD is characterized by multi-organ injury related to intravascular hemolysis. To understand tissue-specific responses to intravascular hemolysis and exposure to heme, we present a transcriptomic atlas in the primary target organs of HbSS vs HbAA transgenic SCD mice.

View Article and Find Full Text PDF

Objectives: Alzheimer's disease (AD) is a complex neurodegenerative disorder that primarily affects elderly individuals. This study aimed to elucidate the intricate mechanisms underlying AD in elderly patients compared with healthy aged individuals using high-throughput RNA sequencing (RNA-seq) data and next-generation knowledge discovery methods (NGKD), with a focus on identifying potential therapeutic agents.

Methods: High-throughput RNA-seq data were obtained from the Gene Expression Omnibus (GEO) database (accession number: GSE104704).

View Article and Find Full Text PDF

The SWItch/Sucrose Non-Fermenting (SWI/SNF) complexes are evolutionarily conserved, ATP-dependent chromatin remodelers crucial for multiple nuclear functions in eukaryotes. Recently, plant BCL-DOMAIN HOMOLOG (BDH) proteins were identified as shared subunits of all plant SWI/SNF complexes, significantly impacting chromatin accessibility and various developmental processes in Arabidopsis. In this study, we performed a comprehensive characterization of mutants, revealing the role of BDH in hypocotyl cell elongation.

View Article and Find Full Text PDF

Ischemic heart disease (IHD) impacts the quality of life and is the most frequently reported cause of morbidity and mortality globally. To assess the changes in the exhaled volatile organic compounds (VOCs) in patients with vs. without ischemic heart disease (IHD) confirmed by stress computed tomography myocardial perfusion (CTP) imaging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!