Mouse Zfy1 and Zfy2 encode zinc finger transcription factors that map to the short arm of the Y chromosome (Yp). They have previously been shown to promote meiotic quality control during pachytene (Zfy1 and Zfy2) and at the first meiotic metaphase (Zfy2). However, from these previous studies additional roles for genes encoded on Yp during meiotic progression were inferred. In order to identify these genes and investigate their function in later stages of meiosis, we created three models with diminishing Yp and Zfy gene complements (but lacking the Y-long-arm). Since the Y-long-arm mediates pairing and exchange with the X via their pseudoautosomal regions (PARs) we added a minute PAR-bearing X chromosome derivative to enable formation of a sex bivalent, thus avoiding Zfy2-mediated meiotic metaphase I (MI) checkpoint responses to the unpaired (univalent) X chromosome. Using these models we obtained definitive evidence that genetic information on Yp promotes meiosis II, and by transgene addition identified Zfy1 and Zfy2 as the genes responsible. Zfy2 was substantially more effective and proved to have a much more potent transactivation domain than Zfy1. We previously established that only Zfy2 is required for the robust apoptotic elimination of MI spermatocytes in response to a univalent X; the finding that both genes potentiate meiosis II led us to ask whether there was de novo Zfy1 and Zfy2 transcription in the interphase between meiosis I and meiosis II, and this proved to be the case. X-encoded Zfx was also expressed at this stage and Zfx over-expression also potentiated meiosis II. An interphase between the meiotic divisions is male-specific and we previously hypothesised that this allows meiosis II critical X and Y gene reactivation following sex chromosome silencing in meiotic prophase. The interphase transcription and meiosis II function of Zfx, Zfy1 and Zfy2 validate this hypothesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4072562 | PMC |
http://dx.doi.org/10.1371/journal.pgen.1004444 | DOI Listing |
Genome Biol Evol
March 2024
Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA.
It has been predicted that the highly degenerate mammalian Y chromosome will be lost eventually. Indeed, Y was lost in the Ryukyu spiny rat Tokudaia osimensis, but the fate of the formerly Y-linked genes is not completely known. We looked for all 12 ancestrally Y-linked genes in a draft T.
View Article and Find Full Text PDFMol Hum Reprod
July 2023
Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA.
Biol Reprod
June 2022
Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA.
PLoS Genet
January 2017
Department of Systems BioMedicine, Tokyo Medical and Dental University (TMDU), Bunkyo, Tokyo, Japan.
The mammalian Y chromosome plays a critical role in spermatogenesis. However, the exact functions of each gene in the Y chromosome have not been completely elucidated, partly owing to difficulties in gene targeting analysis of the Y chromosome. Zfy was first proposed to be a sex determination factor, but its function in spermatogenesis has been recently elucidated.
View Article and Find Full Text PDFHum Mol Genet
December 2016
Department of Pathology, University of Cambridge, Cambridge, UK.
During spermatogenesis, germ cells that fail to synapse their chromosomes or fail to undergo meiotic sex chromosome inactivation (MSCI) are eliminated via apoptosis during mid-pachytene. Previous work showed that Y-linked genes Zfy1 and Zfy2 act as 'executioners' for this checkpoint, and that wrongful expression of either gene during pachytene triggers germ cell death. Here, we show that in mice, Zfy genes are also necessary for efficient MSCI and the sex chromosomes are not correctly silenced in Zfy-deficient spermatocytes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!