The presence of elevated concentration of arsenic in water sources is considered to be health hazard globally. Calcination process is known to change the surface efficacy of the adsorbent. In current study, five adsorbent composites: uncalcined and calcined Fe3O4-HBC prepared at different temperatures (400°C and 1000°C) and environment (air and nitrogen) were investigated for the adsorptive removal of As(V) and As(III) from aqueous solutions determining the influence of solution's pH, contact time, temperature, arsenic concentration and phosphate anions. Characterizations from FTIR, XRD, HT-XRD, BET and SEM analyses revealed that the Fe3O4-HBC composite at higher calcination temperature under nitrogen formed a new product (fayalite, Fe2SiO4) via phase transformation. In aqueous medium, ligand exchange between arsenic and the effective sorbent site ( = FeOOH) was established from the release of hydroxyl group. Langmuir model suggested data of the five adsorbent composites follow the order: Fe3O4-HBC-1000°C(N2)>Fe3O4-HBC (uncalcined)>Fe3O4-HBC-400°C(N2)>Fe3O4-HBC-400°C(air)>Fe3O4-HBC-1000°C(air) and the maximum As(V) and As(III) adsorption capacities were found to be about 3.35 mg g(-1) and 3.07 mg g(-1), respectively. The adsorption of As(V) and As(III) remained stable in a wider pH range (4-10) using Fe3O4-HBC-1000°C(N2). Additionally, adsorption data fitted well in pseudo-second-order (R2>0.99) rather than pseudo-first-order kinetics model. The adsorption of As(V) and As(III) onto adsorbent composites increase with increase in temperatures indicating that it is an endothermic process. Phosphate concentration (0.0l mM or higher) strongly inhibited As(V) and As(III) removal through the mechanism of competitive adsorption. This study suggests that the selective calcination process could be useful to improve the adsorbent efficiency for enhanced arsenic removal from contaminated water.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4072660 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0100704 | PLOS |
J Hazard Mater
January 2025
Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China. Electronic address:
Quorum sensing (QS) is recognized for enhancing bacterial resistance against heavy metals by regulating the production of extracellular substances that hinder metal penetration into the intracellular environment. However, it remains unclear whether QS contributes to resistance by regulating electron transfer, thereby transforming metals from more toxic to less toxic forms. This study investigated the regulatory mechanism of acyl-homoserine lactone (AHL)-mediated QS on electron transfer under As(III) and Cr(VI) stress.
View Article and Find Full Text PDFWater Res
January 2025
School of Civil Engineering, Wuhan University, Wuhan, 430072, PR China. Electronic address:
Inorganic arsenic (As) is one of the most significant chemical contaminants in drinking water worldwide. Although membrane-based technologies are commonly used for As removal, they often encounter challenges including complex operation, high energy consumption, and the need for chemical addition. To address these challenges, we proposed a one-step ultrafiltration (UF) process empowered by in situ biogenic manganese oxides (BioMnO) cake layers without any additional chemicals, to treat source water contaminated with both As and manganese (Mn).
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Unidad Departamental de Química Analítica, Departamento de Química, Facultad de Ciencias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, s/n, 38206 La Laguna, Spain.
Arsenic contamination of water endangers the health of millions of people worldwide, affecting certain countries and regions with especial severity. Interest in the use of Fe-based metal organic frameworks (MOFs) to remove inorganic arsenic species has increased due to their stability and adsorptive properties. In this study, the performance of a synthesized Nano-{Fe-BTC} MOF, containing iron oxide octahedral chains connected by trimesic acid linkers, in adsorbing As(III) and As(V) species was investigated and compared with commercial BasoliteF300 MOF.
View Article and Find Full Text PDFToxics
November 2024
Guangzhou Vocational College of Technology & Business, Guangzhou 511442, China.
Geogenic arsenic (As) contamination in groundwater poses a significant public health risk in many regions worldwide. Previous studies have reported hydrogen peroxide (HO) concentrations ranging from 5.8 to 96 μmol L in rainwater, which may contribute to the oxidation and removal of As.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Academy of Sciences, Guangzhou 510650, China.
Arsenic pollution and its associated health risks have raised widespread concern. Under anaerobic conditions, arsenic mobility and toxicity increase when arsenate [As(V)] is reduced to arsenite [As(III)] by microbes through the cytoplasmic and dissimilatory pathways. However, the relative importance of these two pathways in the environment remains unclear, restricting our ability to effectively predict and regulate the environmental behavior of arsenic.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!