High-throughput microfluidic single-cell analysis pipeline for studies of signaling dynamics.

Nat Protoc

Department of Biosystems Science and Engineering, ETH Zürich, Zurich, Switzerland.

Published: July 2014

Time-dependent analysis of dynamic processes in single live cells is a revolutionary technique for the quantitative studies of signaling networks. Here we describe an experimental pipeline and associated protocol that incorporate microfluidic cell culture, precise stimulation of cells with signaling molecules or drugs, live-cell microscopy, computerized cell tracking, on-chip staining of key proteins and subsequent retrieval of cells for high-throughput gene expression analysis using microfluidic quantitative PCR (qPCR). Compared with traditional culture dish approaches, this pipeline enhances experimental precision and throughput by orders of magnitude and introduces much-desired new capabilities in cell and fluid handling, thus representing a major step forward in dynamic single-cell analysis. A combination of microfluidic membrane valves, automation and a streamlined protocol now enables a single researcher to generate 1 million data points on single-cell protein localization within 1 week, in various cell types and densities, under 48 predesigned experimental conditions selected from different signaling molecules or drugs, their doses, timings and combinations.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nprot.2014.120DOI Listing

Publication Analysis

Top Keywords

single-cell analysis
8
studies signaling
8
signaling molecules
8
molecules drugs
8
high-throughput microfluidic
4
microfluidic single-cell
4
analysis
4
analysis pipeline
4
pipeline studies
4
signaling
4

Similar Publications

Spatial profiling of tissues promises to elucidate tumor-microenvironment interactions and generate prognostic and predictive biomarkers. We analyzed single-cell, spatial data from three multiplex imaging technologies: cyclic immunofluorescence (CycIF) data we generated from 102 breast cancer patients with clinical follow-up, and publicly available imaging mass cytometry and multiplex ion-beam imaging datasets. Similar single-cell phenotyping results across imaging platforms enabled combined analysis of epithelial phenotypes to delineate prognostic subtypes among estrogen-receptor positive (ER+) patients.

View Article and Find Full Text PDF

Based on the notion that hypomorphic germline genetic variants are linked to autoimmune diseases, we reasoned that novel targets for cancer immunotherapy might be identified through germline variants associated with greater T-cell infiltration into tumors. Here, we report that while investigating germline polymorphisms associated with a tumor immune gene signature, we identified PKCδ as a candidate. Genetic deletion of PKCδ in mice resulted in improved endogenous antitumor immunity and increased efficacy of anti-PD-L1.

View Article and Find Full Text PDF

Differentially Expressed Nedd4-binding Protein Ndfip1 Protects Neurons Against Methamphetamine-induced Neurotoxicity.

Neurotox Res

January 2025

Molecular Neuropsychiatry Section, Intramural Research Program, NIH/ NIDA, 21224, Baltimore, MD, U.S.A.

To identify factors involved in methamphetamine (METH) neurotoxicity, we comprehensively searched for genes which were differentially expressed in mouse striatum after METH administration using differential display (DD) reverse transcription-PCR method and sequent single-strand conformation polymorphism analysis, and found two DD cDNA fragments later identified as mRNA of Nedd4 (neural precursor cell expressed developmentally downregulated 4) WW domain-binding protein 5 (N4WBP5), later named Nedd4 family-interacting protein 1 (Ndfip1). It is an adaptor protein for the binding between Nedd4 of ubiquitin ligase (E3) and target substrate protein for ubiquitination. Northern blot analysis confirmed drastic increases in Ndfip1 mRNA in the striatum after METH injections, and in situ hybridization histochemistry showed that the mRNA expression was increased in the hippocampus and cerebellum at 2 h-2 days, in the cerebral cortex and striatum at 18 h-2 days after single METH administration.

View Article and Find Full Text PDF

A comprehensive analysis to reveal the underlying molecular mechanisms of natural killer cell in thyroid carcinoma based on single-cell RNA sequencing data.

Discov Oncol

January 2025

The Department of Experimental Medicine, Meishan City People's Hospital, No. 288, South Fourth Section, Dongpo Avenue, Meishan, 620000, Sichuan, China.

Background: Thyroid carcinoma (THCA) is the most common cancer of the endocrine system. Natural killer (NK) cell play an important role in tumor immune surveillance. The aim of this study was to explore the possible molecular mechanisms involved in NK cell in THCA to help the management and treatment of the disease.

View Article and Find Full Text PDF

Purposes: This study aimed to clarify the clinical outcomes of Bacillus Calmette-Guérin (BCG) treatment in patients with urothelial carcinoma (UC) of the prostatic urethra.

Methods: Between August 2003 and January 2023, 428 patients with non-muscle-invasive UC received BCG treatment (Tokyo strain, 80 mg, ≥ 5 times) in our hospital; 39 had UC of the prostatic urethra. We evaluated the cumulative incidence of intravesical recurrence, progression (muscle-invasive bladder cancer [MIBC] or metastasis), and subsequent radical cystectomy after BCG treatment in patients with UC of the prostatic urethra.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!