Introduction: Palmitoylation describes the enzymatic attachment of the 16-carbon fatty acid, palmitate, to specific cysteines of proteins via a labile thioester bond. This post-translational modification increases the lipophilicity of the modified protein, thus regulating its subcellular distribution and function. The transfer of palmitate to a substrate is mediated by palmitoyl acyltransferases (PATs), while depalmitoylation is catalyzed by acyl protein thioesterases (APTs). Nearly one-third of the 23 genes that encode PATs are linked to human diseases, representing important targets for drug development.
Areas Covered: In this review, the authors summarize the recent technical advances in the field of palmitoylation and how they will affect our ability to understand palmitoylation and its relevance to human disease. They also review the current literature describing existing palmitoylation inhibitors. The aim of this article is to increase the awareness of the importance of palmitoylation in disease by reviewing the recent progress made in identifying pharmacological modulators of PATs/APTs. It also aims to provide suggestions for general considerations in the development of selective and potent PAT inhibitors.
Expert Opinion: Developing therapeutically useful pharmacological modulators of palmitoylation will require that they be developed within the context of well-characterized PAT/APT-related signaling systems. The successful development of potent, specific drugs in similarly complex systems suggests that development of useful drugs targeting PATs is feasible.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1517/17460441.2014.933802 | DOI Listing |
Eur J Med Res
December 2024
Department of Urology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, China.
Background: Clear cell renal cell carcinoma (ccRCC) is a common histological subtype of malignant renal neoplasm. Protein lysine lactylation (Kla) plays a crucial role in tumor metabolic reprogramming. However, little is known regarding the distribution and potential biological functions of Kla in ccRCC.
View Article and Find Full Text PDFBiochemistry
December 2024
LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal.
Nucleic acid mimics (NAMs) have demonstrated high potential as antibacterial drugs. However, very few studies have assessed their possible diffusion across the bacterial envelope. In this work, we studied NAMs' diffusion in lipid bilayer systems that mimic the bacterial outer membrane using molecular dynamics (MD) simulations.
View Article and Find Full Text PDFPediatr Res
November 2024
Department of Pediatrics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China.
J Neurosci Res
September 2024
Department of Biology, University of Iowa, Iowa City, Iowa, USA.
Neurons establish functional connections responsible for how we perceive and react to the world around us. Communication from a neuron to its target cell occurs through a long projection called an axon. Axon distances can exceed 1 m in length in humans and require a dynamic microtubule cytoskeleton for growth during development and maintenance in adulthood.
View Article and Find Full Text PDFFront Genet
July 2024
Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD, United States.
Acute Stress Disorder (ASD) is a psychiatric condition that can develop shortly after trauma exposure. Although molecular studies of ASD are only beginning, groups of metabolites have been found to be significantly altered with acute stress phenotypes in various pre-clinical and clinical studies. ASD implicated metabolites include amino acids (β-hydroxybutyrate, glutamate, 5-aminovalerate, kynurenine and aspartate), ketone bodies (β-hydroxybutyrate), lipids (cortisol, palmitoylethanomide, and N-palmitoyl taurine) and carbohydrates (glucose and mannose).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!