Aim: The aim of this study was to evaluate the surface/mineral changes on enamel before and after the application of acidulated phosphate fluoride (APF) gel, fluoride enhanced hydroxyapatite gel and propolis in conjunction with carbon-dioxide (CO2) laser.

Materials And Methods: Crowns of 40 human maxillary central incisors were collected and were divided into four groups of 10 each: Topical fluoride application only, topical fluoride application followed by CO2 laser irradiation, CO2 laser irradiation followed by topical fluoride application and CO2 laser irradiation before and after topical fluoride application. The 10 crowns in each group was again sectioned into four equal parts of mesio-incisal, disto-incisal, mesio-cervical and disto-cervical sections rendering 40 samples in each group. Each group was again subdivided into four subgroups: Subgroup C - untreated enamel surface (control). Subgroup A - APF gel application, subgroup R - fluoride enhanced hydroxyapatite gel application and subgroup P - propolis application. The surface morphology of the test samples were analyzed by scanning electron microscopy and mineral changes by energy dispersion X-ray spectrophotometer.

Results: Total mineral content is maximum in Group 4A (CO2 laser irradiation before and after APF gel application) and calcium/phosphate ratio is highest in Group 4R (CO2 laser irradiation before and after Remin-Pro application). Group 2A (APF gel application followed by CO2 laser irradiation) has the maximum fluoride retention.

Conclusion: Laser irradiation of enamel through a topically applied APF gel is effective in the prophylaxis and management of dental caries.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4054023PMC
http://dx.doi.org/10.4103/1305-7456.126264DOI Listing

Publication Analysis

Top Keywords

laser irradiation
28
co2 laser
24
apf gel
20
topical fluoride
16
fluoride application
16
gel application
16
application co2
12
application
11
mineral changes
8
changes enamel
8

Similar Publications

Magnetic field-induced synergistic therapy of cancer using magnetoplasmonic nanoplatform.

Mater Today Bio

February 2025

Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.

Combining photothermal and chemotherapy using single nanoplatform is an emerging direction in cancer nanomedicine. Herein, a magnetic field (MF) induced combination of chemo/photothermal therapy is demonstrated using FeO@mSiO@Au core@shell@satellites nanoparticles (NPs) loaded with chemotherapeutic drug doxorubicin (DOX), both and An application of an external MF to the NPs dispersion causes magnetophoretic movement and aggregation of the NPs. While the synthesized NPs only slightly absorb light at ∼800 nm, their aggregation results in a significant near infrared (NIR) absorption associated with plasmon resonance coupling between the Au satellites in the NPs aggregates.

View Article and Find Full Text PDF

Ce6-GFFY is a novel photosensitizer for colorectal cancer therapy.

Genes Dis

March 2025

State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China.

Photodynamic therapy is an "old" strategy for cancer therapy featuring clinical safety and rapid working, but suitable photosensitizers for colorectal cancer therapy remain lacking. This study synthesized a novel photosensitizer termed Ce6-GFFY based on a self-assembling peptide GFFY and a photo-responsive molecule chlorin e6 (Ce6). Ce6-GFFY forms macroparticles with a diameter of ∼160 nm and possesses a half-life of 10 h, as well as an ideal tumor-targeting ability in mouse models.

View Article and Find Full Text PDF

The MKN45 cell line, a type of gastric cancer cell, exhibits resistance to chemotherapy agents through various mechanisms. Curcumin and noscapine, two plant-derived anticancer compounds, exhibit selective cytotoxicity towards cancer cells. However, their bioavailability is poor both in vitro and in vivo.

View Article and Find Full Text PDF

Herein, multi-walled carbon nanotubes (CNT) embedded with RuPdIrPtAu-high entropy alloys (HEA) via pulsed laser irradiation in liquids are successfully fabricated. The resultant composite synergistically enhances hydrazine oxidation reaction (HzOR)-boosted water electrolysis. Notably, HEA with ≈2-5 nm size, are uniformly distributed across the surface of the CNTs.

View Article and Find Full Text PDF

Purpose: This study investigated the effects of femtosecond laser (FL) irradiation on the surface roughness and shear bond strength of high-translucency zirconia (6 mol% yttria-partially stabilized zirconia [6Y-PSZ]) and lithium disilicate (LiSiO) glass ceramics.

Methods: Fully sintered square-shaped specimens of 6Y-PSZ (7 groups; 20 specimens/group) and LiSiO (8 groups; 20 specimens/group) were surface-treated via sandblasting (50-μm alumina sand or glass beads) or FL irradiation (20- or 40-μm dot or cross-line patterns) or using Monobond Etch & Prime (Ivoclar Vivadent AG; only for LiSiO specimens). The surface roughness (arithmetic average [Sa] and developed interfacial area ratio [Sdr]) and shear bond strength after 24 h and 10,000 thermal cycles were measured and statistically analyzed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!