Serum Levels of Glycoproteins are Elevated in Patients with Ovarian Cancer.

Indian J Clin Biochem

Department of Pharmacology, SPP School of Pharmacy and Technology Management, SVKM's NMIMS, Vile Parle (w), Mumbai, 400056 India.

Published: July 2014

Identification of reliable biomarkers for detection and staging of cancer and monitoring the outcome of anticancer therapy has been considered to be of high importance. We aimed to estimate the levels of serum glycoproteins, protein bound-hexose, protein bound hexosamine, protein bound fucose, protein bound sialic acid and protein bound carbohydrate in 32 ovarian cancer patients and compared them with the levels that found in 25 normal subjects. As compared to the normal subjects, all the four fractions of glycoproteins level were significantly elevated in ovarian cancer patients (p < 0.05). Chemotherapy in these patients significantly decreased the levels of serum glycoproteins (p < 0.05). Thus, high levels of serum glycoproteins in ovarian cancer patients could be due to abnormal protein glycosylation indicating malignant transformation of the cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4062676PMC
http://dx.doi.org/10.1007/s12291-013-0380-6DOI Listing

Publication Analysis

Top Keywords

protein bound
16
ovarian cancer
12
cancer patients
8
normal subjects
8
protein
5
serum levels
4
levels glycoproteins
4
glycoproteins elevated
4
elevated patients
4
patients ovarian
4

Similar Publications

Psoriasis is an inflammatory dermatosis that features overproliferation and inflammatory reaction of keratinocytes. A study reported that IL-22 is involved in the pathogenesis of psoriasis by mediating miR-124 to regulate the expression of fibroblast growth factor receptor 2 in keratinocytes. A microRNA may target multiple target genes.

View Article and Find Full Text PDF

Understanding the impact of oxidative modification on protein structure and functions is essential for developing therapeutic strategies to combat macromolecular damage and cell death. However, selectively inducing oxidative modifications in proteins remains challenging. Herein we demonstrate that [V6O13{(OCH2)3CCH2OH}2]2- (V6-OH) hybrid metal-oxo cluster can be used for selective protein oxidative cleavage and modifications.

View Article and Find Full Text PDF

Unlabelled: The tonsils have been identified as a site of replication for Epstein-Barr virus, adenovirus, human papillomavirus, and other respiratory viruses. Human tonsil epithelial cells (HTECs) are a heterogeneous group of actively differentiating cells. Here, we investigated the cellular features and susceptibility of differentiated HTECs to specific influenza viruses, including expression of avian-type and mammalian-type sialic acid (SA) receptors, viral replication dynamics, and the associated cytokine secretion profiles.

View Article and Find Full Text PDF

Eosinophilic chronic rhinosinusitis (ECRS), a CRS with nasal polyps (CRSwNP), is characterized by eosinophilic infiltration with type 2 inflammation and is highly associated with bronchial asthma. Intractable ECRS with poorly controlled asthma is recognized as a difficult-to-treat eosinophilic airway inflammation. Although eosinophils are activated and coincubation with airway epithelial cells prolongs their survival, the interaction mechanism between eosinophils and epithelial cells is unclear.

View Article and Find Full Text PDF

Unveiling the enzymatic pathway of UMG-SP2 urethanase: insights into polyurethane degradation at the atomic level.

Chem Sci

December 2024

LAQV@REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto Rua do Campo Alegre s/n 4169-007 Porto Portugal

The recently discovered metagenomic urethanases UMG-SP1, UMG-SP2, and UMG-SP3 have emerged as promising tools to establish a bio-based recycling approach for polyurethane (PU) waste. These enzymes are capable of hydrolyzing urethane bonds in low molecular weight dicarbamates as well as in thermoplastic PU and the amide bond in polyamide employing a Ser-Ser -Lys triad for catalysis, similar to members of the amidase signature protein superfamily. Understanding the catalytic mechanism of these urethanases is crucial for enhancing their enzymatic activity and improving PU bio-recycling processes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!