The IgH intronic enhancer region Eμ is a combination of both a 220-bp core enhancer element and two 310-350-bp flanking scaffold/matrix attachment regions named MARsEμ. In the mouse, deletion of the core-enhancer Eμ element mainly affects VDJ recombination with minor effects on class switch recombination. We carried out endogenous deletion of the full-length Eμ region (core plus MARsEμ) in the mouse genome to study VH gene repertoire and IgH expression in developing B-lineage cells. Despite a severe defect in VDJ recombination with partial blockade at the pro-B cell stage, Eμ deletion (core or full length) did not affect VH gene usage. Deletion of this regulatory region induced both a decrease of pre-B cell and newly formed B cell compartments and a strong orientation toward the marginal zone B cell subset. Because Igμ H chain expression was decreased in Eμ-deficient pre-B cells, we propose that modification of B cell homeostasis in deficient animals was caused by "weak" pre-B cell and BCR expression. Besides imbalances in B cell compartments, Ag-specific Ab responses were not impaired in animals carrying the Eμ deletion. In addition to its role in VDJ recombination, our study points out that the full-length Eμ region does not influence VH segment usage but ensures efficient Igμ-chain expression required for strong signaling through pre-B cells and newly formed BCRs and thus participates in B cell inflow and fate.

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.1302868DOI Listing

Publication Analysis

Top Keywords

vdj recombination
12
cell
9
enhancer region
8
chain expression
8
marseμ mouse
8
full-length eμ
8
eμ region
8
eμ deletion
8
pre-b cell
8
newly formed
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!