To demonstrate the DFP-effects on the AChE of the mesencephalic raphe region albino rats were investigated using the pharmaco-histochemical method of Butcher et al. (1975). At several times after 1 mg DFP/kg body weight, the histochemical reactions in certain AChE-containing neurons were measured semiquantitatively and compared with biochemical data. Additionally, the multiple forms of water-soluble AChE were separated by microelectrophoresis. Only the electrophoretical results indicate changes of the structural AChE composition 5 d after DFP administration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/S0065-1281(89)80100-X | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford OX1 3TA, United Kingdom.
Daily life for humans and other animals requires switching between periods of threat- and reward-oriented behavior. We investigated neural activity associated with spontaneous switching, in a naturalistic task, between foraging for rewards and seeking information about potential threats with 7T fMRI in healthy humans. Switching was driven by estimates of likelihood of threat and reward.
View Article and Find Full Text PDFBehav Neurol
January 2025
Laboratory of Neurobiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
Astrocytes are the primary cell type in the central nervous system, responsible for maintaining the stability of the brain's internal environment and supporting neuronal functions. Researches have demonstrated the close relationship between astrocytes and the pathophysiology and etiology of major depressive disorder. However, the regulatory mechanisms of astrocytes during depression remain unclear.
View Article and Find Full Text PDFThe landscape of therapeutic deep brain stimulation (DBS) for locomotor function recovery is rapidly evolving. This review provides an overview of electrical neuromodulation effects on spinal cord injury (SCI), focusing on DBS for motor functional recovery in human and animal models. We highlight research providing insight into underlying cellular and molecular mechanisms.
View Article and Find Full Text PDFBrain Struct Funct
December 2024
Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524, São Paulo, SP, 05508-000, Brazil.
Serotonin (5-HT) is an important neurotransmitter for cognition and neurogenesis in the dentate gyrus (DG), which occurs via movement stimulation such as physical activity. Brain 5-HT function changes secondary to aging require further investigation. We evaluated whether aged animals would present changes in the number of 5-HT neurons in regions such as the dorsal (DRN) and median (MRN) raphe nuclei and possible changes in the rate of cellular activation in the DG in response to acute running, as a reduction in 5-HT neurons could contribute to a decline in neuronal activation in the DG in response to physical activity in aged mice.
View Article and Find Full Text PDFMetabolism
February 2025
USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA. Electronic address:
Obesity is a growing global health epidemic with limited orally administered therapeutics. Serotonin (5-HT) is one neurotransmitter which remains an excellent target for new weight-loss therapies, but a gap remains in understanding the mechanisms involved in 5-HT produced in the dorsal Raphe nucleus (DRN) and its involvement in meal initiation. Using an optogenetic feeding paradigm, we showed that the 5-HT➔arcuate nucleus (ARH) circuit plays a role in meal initiation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!