The α-carbonic anhydrases (CAs) are zinc-containing enzymes that catalyze the interconversion of CO2 and HCO3 (-). Here, we focus on human CA II (CA II), a ubiquitous cytoplasmic enzyme. In the second paper in this series, we examine CA IV at the extracellular surface. After microinjecting recombinant CA II in a Tris solution (or just Tris) into oocytes, we expose oocytes to 1.5% CO2/10 mM HCO3 (-)/pH 7.50 while using microelectrodes to monitor intracellular pH (pHi) and surface pH (pHS). CO2 influx causes the familiar sustained pHi fall as well as a transient pHS rise; CO2 efflux does the opposite. Both during CO2 addition and removal, CA II increases the magnitudes of the maximal rate of pHi change, (dpHi/dt)max, and the maximal change in pHS, ΔpHS. Preincubating oocytes with the inhibitor ethoxzolamide eliminates the effects of CA II. Compared with pHS, pHi begins to change only after a delay of ~9 s and its relaxation has a larger (i.e., slower) time constant (τpHi > τpHS ). Simultaneous measurements with two pHi electrodes, one superficial and one deep, suggest that impalement depth contributes to pHi delay and higher τpHi . Using higher CO2/HCO3 (-) levels, i.e., 5%/33 mM HCO3 (-) or 10%/66 mM HCO3 (-), increases (dpHi/dt)max and ΔpHS, though not in proportion to the increase in [CO2]. A reaction-diffusion mathematical model (described in the third paper in this series) accounts for the above general features and supports the conclusion that cytosolic CA-consuming entering CO2 or replenishing exiting CO2-increases CO2 fluxes across the cell membrane.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4216939 | PMC |
http://dx.doi.org/10.1152/ajpcell.00051.2014 | DOI Listing |
Wetlands (Wilmington)
January 2025
Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON Canada.
There are increasing global efforts and initiatives aiming to tackle climate change and mitigate its impacts via natural climate solutions (NCS). Wetlands have been considered effective NCS given their capacity to sequester and retain atmospheric carbon dioxide (CO) while also providing a myriad of other ecosystem functions that can assist in mitigating the impacts of climate change. However, wetlands have a dual impact on climate, influencing the atmospheric concentrations of both CO and methane (CH).
View Article and Find Full Text PDFMar Environ Res
January 2025
First Institute of Oceanography and Key Laboratory of Marine Sciences and Numerical Modelling, Ministry of Natural Resources, Qingdao, 266061, China; Laboratory for Regional Oceanography and Numerical Modelling, Qingdao Marine Science and Technology Center, Qingdao, 266237, China; Shandong Key Laboratory of Marine Sciences and Numerical Modeling, Qingdao, 266061, China. Electronic address:
The tropical Pacific is the largest oceanic source of carbon dioxide (CO) emissions, where persistent marine heatwaves (MHWs) frequently occur. During persistent MHW events which are associated with strong El Niño events, CO outgassing is notably reduced, however, its detailed spatiotemporal response to MHWs has not been fully characterized. In this study, we showed a high degree of consistency between CO source regions in the central and eastern tropical Pacific Ocean and the occurrence regions with average annual MHW days exceeding 45 days (co-occurring area covers 80% of the area where MHWs occur).
View Article and Find Full Text PDFBiotechnol Adv
January 2025
Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; College of Life and Health Sciences, Northeastern University, Shenyang 110169, China. Electronic address:
Ralstonia eutropha H16, a facultative chemolithoautotrophic Gram-negative bacterium, demonstrates remarkable metabolic flexibility by utilizing either diverse organic substrates or CO as the sole carbon source, with H serving as the electron donor under aerobic conditions. The capacity of carbon and energy metabolism of R. eutropha H16 enabled development of synthetic biology technologies and strategies to engineer its metabolism for biosynthesis of value-added chemicals.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden.
Coastal ecosystems play a major role in marine carbon budgets, but substantial uncertainties remain in the sources and fluxes of coastal carbon dioxide (CO). Here, we assess when, where, and how submarine groundwater discharge (SGD) releases CO to shallow coastal ecosystems. Time-series observations of dissolved CO and radon (Rn, a natural groundwater tracer) across 40 coastal systems from 14 countries revealed large SGD-derived CO fluxes.
View Article and Find Full Text PDFGlobal Biogeochem Cycles
January 2025
Heat and drought events are increasing in frequency and intensity, posing significant risks to natural and agricultural ecosystems with uncertain effects on the net ecosystem CO exchange (NEE). The current Vegetation Photosynthesis and Respiration Model (VPRM) was adjusted to include soil moisture impacts on the gross ecosystem exchange (GEE) and respiration ( ) fluxes to assess the temporal variability of NEE over south-western Europe for 2001-2022. Warming temperatures lengthen growing seasons, causing an increase in GEE, which is mostly compensated by a similar increment in .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!