Toxicity of naturally-contaminated manganese soil to selected crops.

J Agric Food Chem

Institute of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic.

Published: July 2014

The impact of manganese excess using naturally contaminated soil (Mn-soil, pseudototal Mn 6494 vs 675 μg g(-1) DW in control soil) in the shoots of four crops was studied. Mn content decreased in the order Brassica napus > Hordeum vulgare > Zea mays > Triticum aestivum. Growth was strongly depressed just in Brassica (containing 13696 μg Mn g(-1) DW). Some essential metals (Zn, Fe) increased in Mn-cultured Brassica and Zea, while macronutrients (K, Ca, Mg) decreased in almost all species. Toxic metals (Ni and Cd) were rather elevated in Mn-soil. Microscopy of ROS, NO, lipid peroxidation, and thiols revealed stimulation in all Mn-cultured crops, but changes were less visible in Triticum, a species with low shoot Mn (2363 μg g(-1) DW). Antioxidative enzyme activities were typically enhanced in Mn-cultured plants. Soluble phenols increased in Brassica only while proteins rather decreased in response to Mn excess. Inorganic anions (chloride, sulfate, and phosphate) were less accumulated in almost all Mn-cultured crops, while the nitrate level rather increased. Organic anions (malate, citrate, oxalate, acetate, and formate) decreased or remained unaffected in response to Mn-soil culture in Brassica, Hordeum, and Triticum but not in Zea. However, the role of organic acids in Mn uptake in these species is not assumed. Because control and Mn-soil differed in pH (6.5 and 3.7), we further studied its impact on Mn uptake in solution culture (using Mn concentration ∼5 mM deducted from water-soluble fraction of Mn-soil). Shoot Mn contents in Mn-treated plants were similar to those observed in soil culture (high in Brassica and low in Triticum) and pH had negligible impact. Fluorescence indicator of "general ROS" revealed no extensive or pH-dependent impact either in control or Mn-cultured roots. Observed toxicity of Mn excess to common crops urges for selection of cultivars with higher tolerance.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jf5010176DOI Listing

Publication Analysis

Top Keywords

μg g-1
12
mn-cultured crops
8
brassica
6
crops
5
mn-soil
5
mn-cultured
5
toxicity naturally-contaminated
4
naturally-contaminated manganese
4
soil
4
manganese soil
4

Similar Publications

Potential of Eucalyptus globulus for the phytoremediation of metals in a Moroccan iron mine soil-a case study.

Environ Sci Pollut Res Int

April 2021

CESAM (Centro de Estudos do Ambiente e do Mar) & Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.

The contamination left by abandoned mines demands sustainable mitigation measures. Hence, the aim of this study was to examine the phytoremediator ability of Eucalyptus globulus Labill. to be used for cleaning up metal-contaminated soils from an African abandoned iron (Fe) mine (Ait Ammar, Oued Zem, Morocco).

View Article and Find Full Text PDF

Recovery of Cr(III) by using chars from the co-gasification of agriculture and forestry wastes.

Environ Sci Pollut Res Int

August 2019

Unidade de Bioenergia, Laboratório Nacional de Energia e Geologia, Estrada do Paço do Lumiar, Ed. J, 1649-038, Lisbon, Portugal.

The aim of the present work was to assess the efficiency of biochars obtained from the co-gasification of blends of rice husk + corn cob (biochar 50CC) and rice husk + eucalyptus stumps (biochar 50ES), as potential renewable low-cost adsorbents for Cr(III) recovery from wastewaters. The two gasification biochars presented a weak porous structure (A = 63-144 m g), but a strong alkaline character, promoted by a high content of mineral matter (59.8% w/w of ashes for 50CC biochar and 81.

View Article and Find Full Text PDF

Adsorption of pharmaceuticals from biologically treated municipal wastewater using paper mill sludge-based activated carbon.

Environ Sci Pollut Res Int

May 2019

Department of Chemistry and CESAM (Centre for Environmental and Marine Studies), University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.

A waste-based alternative activated carbon (AAC) was produced from paper mill sludge under optimized conditions. Aiming its application in tertiary wastewater treatment, AAC was used for the removal of carbamazepine, sulfamethoxazole, and paroxetine from biologically treated municipal wastewater. Kinetic and equilibrium adsorption experiments were run under batch operation conditions.

View Article and Find Full Text PDF

Study of the removal mechanism of aquatic emergent pollutants by new bio-based chars.

Environ Sci Pollut Res Int

October 2017

LAQV/REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal.

This work is dedicated to study the potential application of char byproducts obtained in the gasification of rice husk (RG char) and rice husk blended with corn cob (RCG char) as removal agents of two emergent aquatic contaminants: tetracycline and caffeine. The chars presented high ash contents (59.5-81.

View Article and Find Full Text PDF

The present study investigated the effects of HSP90 inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG) on apoptosis and the cell cycle of the HCT-116 human colon carcinoma cell line, with the aim of elucidating their underlying mechanisms. MTT was used to examine the inhibitory effects of 17-AAG on the proliferation of HCT-116 cells at various time points and doses. The cells were stained with Annexin V-fluorescein isothiocyanate/propidium iodide and evaluated by flow cytometry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!