Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Thermomechanical properties of neat phosphine-catalyzed thiol-Michael networks fabricated in a controlled manner are reported, and a comparison between thiol-acrylate and thiol-vinyl sulfone step-growth networks is performed. When highly reactive vinyl sulfone monomers are used as Michael acceptors, glassy polymer networks are obtained with glass transition temperatures ranging from 30 to 80 °C. Also, the effect of side-chain functionality on the mechanical properties of thiol-vinyl sulfone networks is investigated. It is found that the inclusion of thiourethane functionalities, aryl structures, and most importantly the elimination of interchain ester linkages in the networks significantly elevate the network's glass transition temperature as compared with neat ester-based thiol-Michael networks.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4152384 | PMC |
http://dx.doi.org/10.1002/marc.201400260 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!