On September 2 and 6, 2013, Mexico's National System of Epidemiological Surveillance identified two cases of cholera in Mexico City. Rectal swab cultures from both patients were confirmed as toxigenic Vibrio cholerae serogroup O1, serotype Ogawa, biotype El Tor. Pulsed-field gel electrophoresis and virulence gene amplification (ctxA, ctxB, zot, and ace) demonstrated that the strains were identical to one another but different from strains circulating in Mexico previously. The strains were indistinguishable from the strain that has caused outbreaks in Haiti, the Dominican Republic, and Cuba. The strain was susceptible to doxycycline, had intermediate susceptibility to ampicillin and chloramphenicol, was less than fully susceptible to ciprofloxacin, and was resistant to furazolidone and trimethoprim-sulfamethoxazole. An investigation failed to identify a common source of infection, additional cases, or any epidemiologic link between the cases. Both patients were treated with a single, 300-mg dose of doxycycline, and their symptoms resolved.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5779388PMC

Publication Analysis

Top Keywords

vibrio cholerae
8
cholerae serogroup
8
serogroup serotype
8
serotype ogawa
8
ogawa biotype
8
biotype tor
8
outbreak vibrio
4
tor strain--la
4
strain--la huasteca
4
huasteca region
4

Similar Publications

Background: Diarrhea caused by non-O1/O139-group e (NOVC) tends to be mild and can be readily overlooked. In this report, a NOVC strain designated XXM was isolated from the blood of a 68-year-old male undergoing surgical treatment for a bile duct malignancy in October 2023.

Methods: XXM was identified through a matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS).

View Article and Find Full Text PDF

Unlabelled: Bacteria have evolved diverse strategies to ensure survival under nutrient-limited conditions, where rapid energy generation is not achievable. Here, we performed a transposon insertion site sequencing loss-of-function screen to identify genes that promote pathogen fitness in stationary phase. We discovered that the aintenance of ipid symmetry (Mla) pathway, which is crucial for transferring phospholipids from the outer to the inner membrane, is critical for stationary phase fitness.

View Article and Find Full Text PDF

Non-O1/non-O139 Vibrio cholerae (NOVC) strains are a distinct group of Vibrio cholerae that do not cause epidemic cholera. NOVC infections usually cause mild forms of gastroenteritis, and rarely severe (extra)intestinal infections, mostly affecting immunocompromised patients. Here, we describe the clinical course of a patient with NOVC bacteremia causing multiple liver abscesses, after drinking from a freshwater well in a non-coastal area.

View Article and Find Full Text PDF

a novel typing gene offering enhanced resolution for pandemic species.

Microbiol Spectr

December 2024

Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), Fudan University, Shanghai, China.

The gene , encoding the mannitol transporter subunit IICBA of the phosphotransferase system, was the core gene with the greatest variability in and could be used as a new typing marker in . To expand its application, we performed an evolutionary analysis and found that the gene was present in nine phyla, 371 genera, and 1,662 species of bacteria. It is commonly found in pathogenic species of , followed by , , etc.

View Article and Find Full Text PDF

Objectives: On October 4, 2021, a cholera outbreak was reported in Kapilvastu District, one of Nepal's 26 districts bordering India. This study examined the outbreak's characteristics, response efforts, and the challenges faced.

Methods: A descriptive cross-sectional design was applied for the outbreak investigation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!