A current treatment strategy for peritoneal ovarian cancer is a combination of peritoneal surgery and multi-drug-based chemotherapy that often involves intraperitoneal (IP) injection. A thermosensitive poly-(D,L-lactide-co-glycolide)-block-poly(ethylene glycol)-block-poly-(D,L-lactide-co-glycolide) (PLGA-b-PEG-b-PLGA) hydrogel platform (thermogels) enabled gel loading of poorly work-soluble paclitaxel (cytotoxic agent), 17-allylamino-17-demethoxygeldanamycin (17-AAG, heat shock protein inhibitor), and rapamycin (mammalian target of rapamycin protein inhibitor). PLGA-b-PEG-b-PLGA thermogels (15%) carrying paclitaxel, 17-AAG, and rapamycin (named Triogel) made a successful transition from a free-flowing solution below ambient temperature to a gel depot at body temperature. Triogel gradually released paclitaxel, 17-AAG, and rapamycin at an equal release rate in response to the physical gel erosion. In an ES-2-luc ovarian cancer xenograft model, a single IP injection of Triogel (60, 60, and 30 mg/kg of paclitaxel, 17-AAG, and rapamycin, respectively) significantly reduced tumor burden and prolonged survival of ES-2-luc-bearing nude mice without notable systemic toxicity relative to those delivered by poly(ethylene glycol)-block-poly(d,l-lactic acid) (PEG-b-PLA) micelles in solution via IP or intravenous (IV) injection route. These results show a great potential of a biodegradable thermogel platform carrying multi-drugs for IP chemotherapy in peritoneal ovarian cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4158699PMC
http://dx.doi.org/10.3109/1061186X.2014.931406DOI Listing

Publication Analysis

Top Keywords

ovarian cancer
12
paclitaxel 17-aag
12
17-aag rapamycin
12
thermosensitive poly-dl-lactide-co-glycolide-block-polyethylene
8
poly-dl-lactide-co-glycolide-block-polyethylene glycol-block-poly-dl-lactide-co-glycolide
8
peritoneal ovarian
8
protein inhibitor
8
rapamycin
5
glycol-block-poly-dl-lactide-co-glycolide hydrogels
4
hydrogels multi-drug
4

Similar Publications

Ovarian cancer has a poor prognosis, and screening methods have not been established. Biomarkers based on molecular genetic characteristics must be identified to develop diagnostic and therapeutic strategies for all cancer types, particularly ovarian cancer. The present study aimed to evaluate the usefulness of genetic analysis of cervical and endometrial liquid-based cytology (LBC) specimens for detecting somatic mutations in patients with ovarian cancer.

View Article and Find Full Text PDF

Introduction: Adaptive ChemoTherapy for Ovarian cancer (ACTOv) is a phase II, multicentre, randomised controlled trial, evaluating an adaptive therapy (AT) regimen with carboplatin in women with relapsed, platinum-sensitive high-grade serous or high-grade endometrioid cancer of the ovary, fallopian tube and peritoneum whose disease has progressed at least 6 months after day 1 of the last cycle of platinum-based chemotherapy. AT is a novel, evolutionarily informed approach to cancer treatment, which aims to exploit intratumoral competition between drug-sensitive and drug-resistant tumour subpopulations by modulating drug dose according to a patient's own response to the last round of treatment. ACTOv is the first clinical trial of AT in this disease setting.

View Article and Find Full Text PDF

Advances in gynaecologic oncology research lead to continuous updates in clinical guidelines. However, undergraduate medical education often lacks in-depth coverage of recent developments, limiting students' preparedness for evidence-based management of gynaecological cancers. This study aimed to bridge the educational gap by integrating case-based analyses of practice-changing studies into the undergraduate obstetrics and gynaecology course.

View Article and Find Full Text PDF

This study primarily investigated the mechanism of Astragalus polysaccharides(APS), a Chinese medicinal material, in regulating the Nrf2/SLC7A11/GPX4 signaling pathway to induce ferroptosis in ovarian cancer cells(Caov-3 and SKOV3 cells). Caov-3 and SKOV3 cells were divided into control(Vehicle) group, APS group, glutathione peroxidase 4 inhibitor(RSL3) group, and APS+RSL3 group. After 48 h of intervention, the activity and morphology of the cells in each group were observed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!