Fin whale MDH-1 and MPI allozyme variation is not reflected in the corresponding DNA sequences.

Ecol Evol

Evolutionary Genetics Group, Department of Genetics, Microbiology, and Toxicology, Stockholm University Svante Arrhenius Väg 20C, S-106 91 Stockholm, Sweden ; Marine Evolution and Conservation, Centre for Ecological and Evolutionary Studies, University of Groningen PO Box 11103, 9700 CC, Groningen, The Netherlands.

Published: May 2014

The appeal of genetic inference methods to assess population genetic structure and guide management efforts is grounded in the correlation between the genetic similarity and gene flow among populations. Effects of such gene flow are typically genomewide; however, some loci may appear as outliers, displaying above or below average genetic divergence relative to the genomewide level. Above average population, genetic divergence may be due to divergent selection as a result of local adaptation. Consequently, substantial efforts have been directed toward such outlying loci in order to identify traits subject to local adaptation. Here, we report the results of an investigation into the molecular basis of the substantial degree of genetic divergence previously reported at allozyme loci among North Atlantic fin whale (Balaenoptera physalus) populations. We sequenced the exons encoding for the two most divergent allozyme loci (MDH-1 and MPI) and failed to detect any nonsynonymous substitutions. Following extensive error checking and analysis of additional bioinformatic and morphological data, we hypothesize that the observed allozyme polymorphisms may reflect phenotypic plasticity at the cellular level, perhaps as a response to nutritional stress. While such plasticity is intriguing in itself, and of fundamental evolutionary interest, our key finding is that the observed allozyme variation does not appear to be a result of genetic drift, migration, or selection on the MDH-1 and MPI exons themselves, stressing the importance of interpreting allozyme data with caution. As for North Atlantic fin whale population structure, our findings support the low levels of differentiation found in previous analyses of DNA nucleotide loci.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4063476PMC
http://dx.doi.org/10.1002/ece3.1046DOI Listing

Publication Analysis

Top Keywords

fin whale
12
mdh-1 mpi
12
genetic divergence
12
allozyme variation
8
population genetic
8
gene flow
8
local adaptation
8
allozyme loci
8
north atlantic
8
atlantic fin
8

Similar Publications

Early development of vertebral column and appendicular skeleton in Naozhou Larimichthys crocea (Richardson, 1846).

J Fish Biol

January 2025

Key Laboratory of Aquatic Ecology and Aquaculture of Tianjin, College of Fisheries, Tianjin Agricultural University, Tianjin, People's Republic of China.

Understanding the developmental sequence characteristics of the vertebral and appendicular skeletons of the larvae and juveniles of Larimichthys crocea (Naozhou population) can provide theoretical basis for seedling cultivation, environmental adaptation, and taxonomic identification. The cartilage-bone double staining method was used to stain, observe, and analyse the vertebrae, pectoral fins, anal fins, caudal fins, and dorsal fins of the larvae and juveniles of L. crocea (0-30 days post-hatching [DPH]).

View Article and Find Full Text PDF

Previous studies have described two distinct vascular systems in cetacean fins. However, these studies have been limited to Delphinoidea species, with little information on their three-dimensional structures. In this study, the anatomical analysis of the caudal and dorsal fins of a dwarf sperm whale was conducted using X-ray computed tomography and gross dissection with staining, providing the first confirmation of the two vascular systems in the fins of the family Kogiidae.

View Article and Find Full Text PDF
Article Synopsis
  • Climate change is altering habitats in the Arctic Ocean, affecting migrating baleen whales like blue and fin whales, leading to changes in their range and presence in Arctic waters.
  • A study using passive acoustic monitoring in Fram Strait from 2012 to 2021 reveals that blue whales are primarily present from July to October, with some winter activity, while fin whales peak in mid-summer to autumn with some winter and sporadic spring presence.
  • Environmental factors such as zooplankton mass and sea surface temperature influence the acoustic presence of blue and fin whales, with no significant trends in the timing of their presence over the years, indicating Fram Strait is an important feeding ground for these species.
View Article and Find Full Text PDF

This study explores the behavior of organophosphate esters (OPEs) in different species within marine ecosystems and their potential for bioaccumulation and biomagnification. The concentrations of OPEs were analyzed in marine species (krill (Meganyctiphanes norvegica), jellyfish (Pelagia noctiluca), European sardine (Sardina pilchardus), European anchovy (Engraulis encrasicolus), European hake (Merluccius merluccius), loggerhead turtle (Caretta caretta), European squid (Loligo vulgaris), fin whale (Balaenoptera physalus) and striped dolphin (Stenella coeruleoalba)) from different trophic levels, to understand their distribution and contamination profiles. The study provides insights into the metabolism of OPEs and their biomagnification on species occupying higher trophic levels.

View Article and Find Full Text PDF

Baleen stable isotopes reveal climate-driven behavioural shifts in North Atlantic fin whales.

Sci Total Environ

December 2024

Institut de Recerca de la Biodiversitat (IRBio) and Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA), Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain; Reial Acadèmia de Ciències i Arts de Barcelona (RACAB), la Rambla 115, 08002 Barcelona, Spain.

Article Synopsis
  • Climate variability affects marine ecosystems, influencing the diet and migration of North Atlantic fin whales.
  • Researchers conducted stable isotope analysis on baleen plates of 29 fin whales to track their dietary habits and migration patterns over time.
  • Findings reveal that climate patterns, such as the North Atlantic Oscillation and Atlantic Multidecadal Oscillation, lead to shifts in whale diets towards higher trophic resources and changes in migratory routes, demonstrating the species’ adaptability to climate changes.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!