Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this paper, a passive planar micromixer with ellipse-like micropillars is proposed to operate in the laminar flow regime for high mixing efficiency. With a splitting and recombination (SAR) concept, the diffusion distance of the fluids in a micromixer with ellipse-like micropillars was decreased. Thus, space usage for micromixer of an automatic sample collection system is also minimized. Numerical simulation was conducted to evaluate the performance of proposed micromixer by solving the governing Navier-Stokes equation and convection-diffusion equation. With software (COMSOL 4.3) for computational fluid dynamics (CFD) we simulated the mixing of fluids in a micromixer with ellipse-like micropillars and basic T-type mixer in a laminar flow regime. The efficiency of the proposed micromixer is shown in numerical results and is verified by measurement results.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cmpb.2014.05.007 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!