Since its introduction in the late 19(th) century, the Langendorff isolated heart perfusion apparatus, and the subsequent development of the working heart model, have been invaluable tools for studying cardiovascular function and disease(1-15). Although the Langendorff heart preparation can be used for any mammalian heart, most studies involving this apparatus use small animal models (e.g., mouse, rat, and rabbit) due to the increased complexity of systems for larger mammals(1,3,11). One major difficulty is ensuring a constant coronary perfusion pressure over a range of different heart sizes - a key component of any experiment utilizing this device(1,11). By replacing the classic hydrostatic afterload column with a centrifugal pump, the Langendorff working heart apparatus described below allows for easy adjustment and tight regulation of perfusion pressures, meaning the same set-up can be used for various species or heart sizes. Furthermore, this configuration can also seamlessly switch between constant pressure or constant flow during reperfusion, depending on the user's preferences. The open nature of this setup, despite making temperature regulation more difficult than other designs, allows for easy collection of effluent and ventricular pressure-volume data.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4189428PMC
http://dx.doi.org/10.3791/51671DOI Listing

Publication Analysis

Top Keywords

working heart
12
heart
8
animal models
8
heart sizes
8
allows easy
8
isolated working
4
heart system
4
system large
4
large animal
4
models introduction
4

Similar Publications

Cardioprotective potential of tectochrysin against vanadium induced heart damage via regulating NLRP3, JAK1/STAT3 and NF-κB pathway.

J Trace Elem Med Biol

January 2025

Department of Pathology, College of Medicine, King Khalid University, Asir 61421, Saudi Arabia; Department of Forensic Medicine and Clinical Toxicology, Mansoura University, Egypt.

Background: Vanadium (VAN) is a significant trace element, but its higher exposure is reported to cause severe organ toxicity. Tectochrysin (TEC) is a naturally derived flavonoid which demonstrates a wide range of pharmacological properties.

Aim: The current study was planned to assess the cardioprotective potential of TEC against VAN induced cardiotoxicity in rats via regulating biochemical, and histological profile.

View Article and Find Full Text PDF

Objective: This study investigated the long-term health risks associated with occupational noise exposure. By using 9 years of health examination data from a major manufacturing company in Taiwan, this study compared the health indices of employees in noise-intensive and non-noise-intensive work environments.

Methods: A retrospective analysis of 6278 health examination reports spanning 9 years was conducted to compare 20 health indices among 166 employees evenly distributed between noise-intensive and non-noise-intensive workgroups.

View Article and Find Full Text PDF

Heart disease remains a leading cause of mortality and morbidity worldwide, necessitating the development of accurate and reliable predictive models to facilitate early detection and intervention. While state of the art work has focused on various machine learning approaches for predicting heart disease, but they could not able to achieve remarkable accuracy. In response to this need, we applied nine machine learning algorithms XGBoost, logistic regression, decision tree, random forest, k-nearest neighbors (KNN), support vector machine (SVM), gaussian naïve bayes (NB gaussian), adaptive boosting, and linear regression to predict heart disease based on a range of physiological indicators.

View Article and Find Full Text PDF

Quotient Complex (QC)-Based Machine Learning for 2D Hybrid Perovskite Design.

J Chem Inf Model

January 2025

Division of Physics & Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.

With remarkable stability and exceptional optoelectronic properties, two-dimensional (2D) halide layered perovskites hold immense promise for revolutionizing photovoltaic technology. Effective data representations are key to the success of all learning models. Currently, the lack of comprehensive and accurate material representations has hindered AI-based design and discovery of 2D perovskites, limiting their potential for advanced photovoltaic applications.

View Article and Find Full Text PDF

Amid an aging global population, heart failure has become a leading cause of hospitalization among older people. Its high prevalence and mortality rates underscore the importance of accurate mortality prediction for swift disease progression assessment and better patient outcomes. The evolution of artificial intelligence (AI) presents new avenues for predicting heart failure mortality.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!