Respiratory tract specific cell populations, or tissue engineered in vitro grown human lung, have the potential to be used as research tools to mimic physiology, toxicology, pathology, as well as infectious diseases responses of cells or tissues. Studies related to respiratory tract pathogenesis or drug toxicity testing in the past made use of basic systems where single cell populations were exposed to test agents followed by evaluations of simple cellular responses. Although these simple single-cell-type systems provided good basic information related to cellular responses, much more can be learned from cells grown in fabricated microenvironments which mimic in vivo conditions in specialized microfabricated chambers or by human tissue engineered three-dimensional (3D) models which allow for more natural interactions between cells. Recent advances in microengineering technology, microfluidics, and tissue engineering have provided a new approach to the development of 2D and 3D cell culture models which enable production of more robust human in vitro respiratory tract models. Complex models containing multiple cell phenotypes also provide a more reasonable approximation of what occurs in vivo without the confounding elements in the dynamic in vivo environment. The goal of engineering good 3D human models is the formation of physiologically functional respiratory tissue surrogates which can be used as pathogenesis models or in the case of 2D screening systems for drug therapy evaluation as well as human toxicity testing. We hope that this manuscript will serve as a guide for development of future respiratory tract model systems as well as a review of conventional models.

Download full-text PDF

Source
http://dx.doi.org/10.1177/1535370214536679DOI Listing

Publication Analysis

Top Keywords

respiratory tract
16
tissue engineered
12
models
8
cell populations
8
toxicity testing
8
cellular responses
8
tissue
5
respiratory
5
human
5
modeling lung
4

Similar Publications

Introduction: Stenotrophomonas maltophilia is an opportunistic pathogen associated with various nosocomial infections and is known for its intrinsic multidrug resistance. This study aims to provide a comprehensive overview of the epidemiology and resistance patterns of S. maltophilia in China from 2014 to 2021.

View Article and Find Full Text PDF

Mental disorders are complex illnesses with multifactorial etiologies involving genetic and environmental components. This review focuses on cellular models derived from the olfactory epithelium as a promising tool to study the molecular mechanisms of some neuropsychiatric diseases. The authors consider cell lines allowing the identification of potential biomarkers and pathogenetic mechanisms of schizophrenia, bipolar disorder, and Alzheimer's disease.

View Article and Find Full Text PDF

Children use nasogastric tubes (NGTs) to ensure optimum nutrition and medication delivery when oral feeding fails or when they experience faltering growth. Although this method is less invasive, children may experience complications associated with NGTs. There is a gap in the literature regarding the types and prevention of complications of NGTs in the pediatric population at home.

View Article and Find Full Text PDF

Progress of CCL20-CCR6 in the airways: a promising new therapeutic target.

J Inflamm (Lond)

December 2024

Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China.

The chemokine CCL20, a small cytokine that belongs to the C-C chemokine family, interacts with its homologous receptor CCR6, which is expressed on wide range of cell types. According to current research, the CCL20-CCR6 has been established as acritical player in a diverse range of inflammatory, oncogenic, and autoimmune diseases. Within the respiratory system, CCL20-CCR6 demonstrates heightened expression in conditions such as allergic asthma, chronic airway inflammation, non-small cell lung cancer (NSCLC), chronic obstructive pulmonary disease (COPD), and other respiratory diseases, which is conducive to the inflammatory mediators recruitment and tumor microenvironment remodeling.

View Article and Find Full Text PDF

Delineation of intersegmental plane: application of blood flow blocking method in pulmonary segmentectomy.

J Cardiothorac Surg

December 2024

Department of Pulmonary Surgery, Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China.

Background: The Modified Inflation-Deflation Method (MIDM) is widely used in China in pulmonary segmentectomies. We optimized the procedure, which was named as Blood Flow Blocking Method (BFBM), also known as "No-Waiting Segmentectomy". This method has produced commendable clinical outcomes in segmentectomies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!