SYF2 is a putative homolog of human p29 in Saccharomyces cerevisiae. It seems to be involved in pre-mRNA splicing and cell cycle progression. Disruption of SYF2 leads to reduced α-tubulin expression and delayed nerve system development in zebrafish. Due to the potential of SYF2 in modulating microtubule dynamics in nervous system, we investigated the spatiotemporal expression of SYF2 in a rat sciatic nerve crush (SNC) model. We found that SNC resulted in a significant upregulation of SYF2 from 3 days to 1 week and subsequently returned to the normal level at 4 weeks. At its peak expression, SYF2 distributed predominantly in Schwann cells. In addition, upregulation of SYF2 was approximately in parallel with Oct-6, and numerous Schwann cells expressing SYF2 were Oct-6 positive. In vitro, we observed enhanced expression of SYF2 during the process of cyclic adenosine monophosphate (cAMP)-induced Schwann cell differentiation. SYF2-specific siRNA-transfected Schwann cells did not show significant morphological change in the process of Schwann cell differentiation. Also, we found shorter and disorganized microtubule structure and a decreased migration in SYF2-specific siRNA-transfected Schwann cells. Together, these findings indicated that the upregulation of SYF2 was associated with Schwann cell differentiation and migration following sciatic nerve crush.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10571-014-0078-1DOI Listing

Publication Analysis

Top Keywords

schwann cell
16
cell differentiation
16
schwann cells
16
sciatic nerve
12
nerve crush
12
expression syf2
12
upregulation syf2
12
syf2
11
schwann
8
differentiation migration
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!