In recent years, musicians have been increasingly recruited to investigate grey and white matter neuroplasticity induced by skill acquisition. The development of Diffusion Tensor Magnetic Resonance Imaging (DT-MRI) has allowed more detailed investigation of white matter connections within the brain, addressing questions about the effect of musical training on connectivity between specific brain regions. Here, current DT-MRI analysis techniques are discussed and the available evidence from DT-MRI studies into differences in white matter architecture between musicians and non-musicians is reviewed. Collectively, the existing literature tends to support the hypothesis that musical training can induce changes in cross-hemispheric connections, with significant differences frequently reported in various regions of the corpus callosum of musicians compared with non-musicians. However, differences found in intra-hemispheric fibres have not always been replicated, while findings regarding the internal capsule and corticospinal tracts appear to be contradictory. There is also recent evidence to suggest that variances in white matter structure in non-musicians may correlate with their ability to learn musical skills, offering an alternative explanation for the structural differences observed between musicians and non-musicians. Considering the inconsistencies in the current literature, possible reasons for conflicting results are offered, along with suggestions for future research in this area.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4101485 | PMC |
http://dx.doi.org/10.3390/brainsci4020405 | DOI Listing |
Psychiatry Res Neuroimaging
January 2025
Department of Psychiatry, Kyoto University Graduate School of Medicine, Address: 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.
The left posterior superior temporal gyrus (pSTG) is thought to be involved in the pathophysiology and core symptoms of schizophrenia, although its structural connectivity has not yet been systematically investigated. Here, we aimed to evaluate its white matter (WM) connectivity with Broca's area, the thalamus, and the right pSTG. Eighty-three patients with schizophrenia and 141 healthy controls underwent diffusion-weighted imaging and T1-weighted three-dimensional magnetic resonance imaging.
View Article and Find Full Text PDFNeurobiol Aging
January 2025
Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Amsterdam University Medical Center, Location VUmc, Amsterdam, the Netherlands; Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany.
An emerging biomarker of blood-brain barrier (BBB) permeability is the time of exchange (Tex) of water from the blood to tissue, as measured by multi-echo arterial spin labeling (ASL) MRI. This new non-invasive sequence, already tested in mice, has recently been adapted to humans and optimized for clinical scanning time. In this study, we studied the normal variability of Tex over age and sex, which needs to be established as a reference for studying changes in neurological disease.
View Article and Find Full Text PDFJ Neuroradiol
January 2025
Soochow Medical college of Soochow University, Suzhou, PR China; Center for Rehabilitation Medicine, Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, PR China. Electronic address:
Background: The potential for early white matter hyperintensities(WMH) regression and associated contributory factors remains uncertain. The purpose of this study is to investigate whether WMH regress at early time of three months after minor ischemic stroke (MIS) or transient ischemic attack (TIA), while also identifying factors that may influence this outcome.
Methods: A retrospective analysis of a prospective subcohort from the CHANCE trial comprising individuals with MIS and TIA was conducted.
Bioorg Med Chem
January 2025
University/BHF Centre for Cardiovascular Sciences, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ UK; Edinburgh Imaging, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ UK. Electronic address:
Sphingosine-1-phosphate-5 receptors (S1P) are predominantly expressed in oligodendrocytes and as a result have been proposed as an important target in Multiple Sclerosis (MS). Selective S1P radiotracers could enable in vivo positron emission tomography (PET) imaging of oligodendrocytes activity. Here we report the synthesis, radiolabelling and first preclinical evaluation of the pharmacokinetics and binding properties of a lead 6-arylaminobenzamide derivative, 6-(mesitylamino)-2-methoxy-3-methylbenzamide (also named as TEFM180), as a potential core scaffold for development of novel S1P PET radiotracers.
View Article and Find Full Text PDFMult Scler Relat Disord
January 2025
Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Neurology, Isfahan University of Medical Sciences, Isfahan, Iran.
Background: Alterations in structural connectivity of brain networks have been linked to complex cognitive functions in people with multiple sclerosis (PwMS). However, a definitive consensus on the optimal diffusion tensor imaging (DTI) markers as indicators of cognitive performance remains incomplete and inconclusive. This systematic review and meta-analysis aimed to explore the evidence on the correlation between DTI metrics and cognitive functions in PwMS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!